GNA13 (Gα13) is one of two alpha subunit members of the G12/13 family of heterotrimeric G-proteins which mediate signaling downstream of GPCRs. It is known to be essential for embryonic development and vasculogenesis and has been increasingly shown to be involved in mediating several steps of cancer progression. Recent studies found that Gα13 can function as an oncogene and contributes to progression and metastasis of multiple tumor types, including ovarian, head and neck and prostate cancers.
View Article and Find Full Text PDFG12 proteins comprise a subfamily of G-alpha subunits of heterotrimeric GTP-binding proteins (G proteins) that link specific cell surface G protein-coupled receptors (GPCRs) to downstream signaling molecules and play important roles in human physiology. The G12 subfamily contains two family members: Gα12 and Gα13 (encoded by the GNA12 and GNA13 genes, respectively) and, as with all G proteins, their activity is regulated by their ability to bind to guanine nucleotides. Increased expression of both Gα12 and Gα13, and their enhanced signaling, has been associated with tumorigenesis and tumor progression of multiple cancer types over the past decade.
View Article and Find Full Text PDFGNA13, the α subunit of a heterotrimeric G protein, mediates signaling through G-protein-coupled receptors (GPCRs). GNA13 is up-regulated in many solid tumors, including prostate cancer, where it contributes to tumor initiation, drug resistance, and metastasis. To better understand how GNA13 contributes to tumorigenesis and tumor progression, we compared the entire transcriptome of PC3 prostate cancer cells with those cells in which GNA13 expression had been silenced.
View Article and Find Full Text PDFCancer cells frequently boost nucleotide metabolism (NM) to support their increased proliferation, but the consequences of elevated NM on tumor de-differentiation are mostly unexplored. Here, we identified a role for thymidylate synthase (TS), a NM enzyme and established drug target, in cancer cell de-differentiation and investigated its clinical significance in breast cancer (BC). In vitro, TS knockdown increased the population of CD24 differentiated cells, and attenuated migration and sphere-formation.
View Article and Find Full Text PDFCancer cells alter their metabolism to support their malignant properties. In this study, we report that the glucose-transforming polyol pathway (PP) gene aldo-keto-reductase-1-member-B1 () strongly correlates with epithelial-to-mesenchymal transition (EMT). This association was confirmed in samples from lung cancer patients and from an EMT-driven colon cancer mouse model with p53 deletion.
View Article and Find Full Text PDFTreatment failure in solid tumors occurs due to the survival of specific subpopulations of cells that possess tumor-initiating (TIC) phenotypes. Studies have implicated G protein-coupled-receptors (GPCRs) in cancer progression and the acquisition of TIC phenotypes. Many of the implicated GPCRs signal through the G protein GNA13.
View Article and Find Full Text PDFGα13 (encoded by GNA13 gene) is the alpha subunit of a heterotrimeric G-protein that mediates signaling through specific G-protein-coupled receptors (GPCRs). Increased GNA13 expression has been observed in metastatic breast cancer cells. Recently, we have shown that enhanced GNA13 signaling in MCF-10a cells, a benign breast cancer cell line increased its invasiveness.
View Article and Find Full Text PDFBackground: Gα13 (GNA13) is the α subunit of a heterotrimeric G protein that mediates signaling through specific G protein-coupled receptors (GPCRs). Our recent study showed that control of GNA13 expression by specific microRNAs (miRNAs or miRs) is important for prostate cancer cell invasion. However, little is known about the control of GNA13 expression in breast cancers.
View Article and Find Full Text PDFThe FUS-CHOP fusion protein has been found to be instrumental for specific oncogenic processes in liposarcoma, but its ability to induce metastasis and the underlying mechanisms by which this can be achieved remain unknown. To dissect its functional role in this context, we stably overexpressed this protein in SW872 liposarcoma and HT1080 fibrosarcoma cell lines, and were able to demonstrate that forced expression of FUS-CHOP significantly increases migration and invasion, as well as enhances lung and liver metastasis in the in vivo chicken chorioallantoic membrane (CAM) model, that is proliferation independent. Additionally, FUS-CHOP enhances the expression of matrix-metalloproteinases -2 and -9, and transactivates their promoters in vitro.
View Article and Find Full Text PDFG protein-coupled receptors (GPCRs) and their ligands have been implicated in progression and metastasis of several cancers. GPCRs signal through heterotrimeric G proteins, and among the different types of G proteins, GNA12/13 have been most closely linked to tumor progression. In this study, we explored the role of GNA13 in prostate cancer cell invasion and the mechanism of up-regulation of GNA13 in these cells.
View Article and Find Full Text PDFDespite progress in treatment, progressive non-small cell lung cancer (NSCLC) still limits survival dramatically, and novel therapeutic compounds are needed. Initial investigations suggest that artesunate (ART), an antimalarial drug, has antiproliferative capacities. However, antiinvasive and antimetastatic properties of ART in cancer have never been explored.
View Article and Find Full Text PDF