Environ Sci Process Impacts
March 2015
Future modifications of fuels should include evaluation of the proposed constituents for their potential to damage environmental resources such as the subsurface environment. Batch and column experiments were designed to simulate biofuel spills in the subsurface environment and to evaluate the sorption and desorption behavior of target fuel constituents (i.e.
View Article and Find Full Text PDFWe describe the use of electrospray-assisted pyrolysis ionization/mass spectrometry (ESA-Py/MS) to selectively ionize trace polar compounds that coexist with large amounts of nonpolar hydrocarbons in crude oil, amber, humic substances, and rubber samples. Samples of different origins are distinguished rapidly by their positive ion ESA-Py mass spectra without prior separation or chemical pretreatment. During ESA-Py analysis, the samples in their solid or liquid states were pyrolyzed at 590, 630 or 940 degrees C using a commercial Curie-point pyrolysis probe.
View Article and Find Full Text PDFAuthentic propane with known position-specific carbon isotope composition at each carbon atom was subjected to hydroxylation by the particulate and soluble methane monooxygenase (pMMO and sMMO) from Methylococcus capsulatus (Bath), and the corresponding position-specific carbon isotope content was redetermined for the product 2-propanol. Neither the reaction mediated by pMMO nor that with sMMO showed an intermolecular (12)C/(13)C kinetic isotope effect effect on the propane hydroxylation at the secondary carbon; this indicates that there is little structural change at the carbon center attacked during formation of the transition state in the rate-determining step. This finding is in line with the concerted mechanism proposed for pMMO (Bath), and suggested for sMMO (Bath), namely, direct side-on insertion of an active "O" species across the C-H bond, as has been previously reported for singlet carbene insertion.
View Article and Find Full Text PDF