Publications by authors named "Suh P"

The gastrointestinal functions of secretin have been fairly well established. However, its function and mode of action within the nervous system remain largely unclear. To gain insight into this area, we have attempted to determine the effects of secretin on neuronal differentiation.

View Article and Find Full Text PDF

Although the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) has been implicated in the regulation of several immune responses, its target receptors and signaling mechanisms have yet to be fully elucidated in immune cells. In this study, we found that PACAP27, but not PACAP38, specifically stimulated intracellular calcium mobilization and ERK phosphorylation in human neutrophils. Moreover, formyl peptide receptor-like 1 (FPRL1) was identified as a PACAP27 receptor, and PACAP27 was found to selectively stimulate intracellular calcium increase in FPRL1-transfected rat basophil leukocytes-2H3 cell lines.

View Article and Find Full Text PDF

Vaults are highly conserved, ubiquitous ribonucleoprotein (RNP) particles with an unidentified function. For the three protein species (TEP1, VPARP, and MVP) and a small RNA that comprises vault, expression of the unique 100-kDa major vault protein (MVP) is sufficient to form the basic vault structure. To identify and characterize proteins that interact with the Src homology 2 (SH2) domain of Src and potentially regulate Src activity, we used a pull-down assay using GST-Src-SH2 fusion proteins.

View Article and Find Full Text PDF

Endogenous opioid peptides, found in the central and peripheral nervous systems, perform neuromodulatory roles, and display a wide range of functional and pharmacological properties in vitro and in vivo. In this study, we investigated the effects of prodynorphin gene products on intracellular signaling events and cell survival in rat pheochromocytoma PC12 cells. Leumorphin, but not other prodynorphin gene products including dynorphin A, beta-neoendorphin and rimorphin (dynorphin B), increased cell viability in PC12 cells.

View Article and Find Full Text PDF

Phospholipase D (PLD), which catalyzes the hydrolysis of phosphatidylcholine to phosphatidic acid and choline, plays key roles in cellular signal transduction by mediating extracellular stimuli including hormones, growth factors, neurotransmitters, cytokines and extracellular matrix molecules. The molecular mechanisms by which domains regulate the activity of PLD--especially the phox homology (PX) domain--have not been fully elucidated. In this study, we have examined the properties of the PX domains of PLD1 and PLD2 in terms of phosphoinositide binding and PLD activity regulation.

View Article and Find Full Text PDF

Phospholipase C-gamma1 (PLC-gamma1) plays pivotal roles in cellular growth and proliferation. Upon the stimulation of growth factors and hormones, PLC-gamma1 is rapidly phosphorylated at three known sites; Tyr771, Tyr783 and Tyr1254 and its enzymatic activity is up-regulated. In this study, we demonstrate for the first time that Grb2, an adaptor protein, specifically interacts with tyrosine-phosphorylated PLC-gamma1 at Tyr783.

View Article and Find Full Text PDF

Phospholipase C-gamma1, containing two SH2 and one SH3 domains which participate in the interaction between signaling molecules, plays a significant role in the growth factor-induced signal transduction. However, the role of the SH domains in the growth factor-induced PLC-gamma1 regulation is unclear. By peptide-mass fingerprinting analysis, we have identified SHIP1 as the binding protein for the SH3 domain of PLC-gamma1.

View Article and Find Full Text PDF

Phospholipase C-beta (PLC-beta) hydrolyses phosphatidylinositol 4,5-bisphosphate and generates inositol 1,4,5-trisphosphate in response to activation of various G protein-coupled receptors (GPCRs). Using glial cells from knock-out mice lacking either PLC-beta1 [PLC-beta1 (-/-)] or PLC-beta3 [PLC-beta3 (-/-)], we examined which isotype of PLC-beta participated in the cellular signaling events triggered by thrombin. Generation of inositol phosphates (IPs) was enhanced by thrombin in PLC-beta1 (-/-) cells, but was negligible in PLC-beta3 (-/-) cells.

View Article and Find Full Text PDF

Agouti-related protein (AgRP) is an orexigenic peptide which is composed of three parts; the amino (N)-terminus, the middle part, and the carboxyl (C)-terminus. AgRP has been implicated in various cell signaling, but the precise role of each parts are currently unclear. In this study, we have attempted to determine which part of AgRP was critical for insulin secretion.

View Article and Find Full Text PDF

We screened a library of 11,000 small molecular weight chemicals, looking for compounds that affect cell viability. We have identified 2-amino-N-quinoline-8-yl-benzenesulfonamide (QBS) as a potent cytotoxic compound that induces cell cycle arrest and apoptosis. Treatment of Jurkat T cells with QBS increased the levels of cyclin B1 as well as phosphorylated-cdc2, which was accompanied by reduced activity of cdc2 kinase, suggesting that QBS may induce cell cycle arrest at G2 phase.

View Article and Find Full Text PDF

It has been established that protein kinase Czeta (PKCzeta) participates in diverse signaling pathways and cellular functions in a wide variety of cells, exhibiting properties relevant to cellular survival and proliferation. Currently, however, the regulation mechanism of PKCzeta remains elusive. Here, for the first time, we determine that phospholipase D2 (PLD2) enhances PKCzeta activity through direct interaction in a lipase activity-independent manner.

View Article and Find Full Text PDF

PLC (phospholipase C) plays an important role in intracellular signal transduction by hydrolysing phosphatidylinositol 4,5-bisphosphate, a membrane phospholipid. To date, 12 members of the mammalian PLC isoforms have been identified and classified into five isotypes beta, gamma, delta, epsilon and zeta, which are regulated by distinct mechanisms. In the present study, we describe the identification of a novel PLC isoform in the brains of human and mouse, named PLC-eta, which contains the conserved pleckstrin homology domain, X and Y domains for catalytic activity and the C2 domain.

View Article and Find Full Text PDF

Phospholipase C-beta isozymes that are activated by G protein-coupled receptors (GPCR) and heterotrimeric G proteins carry a PSD-95/Dlg/ZO-1 (PDZ) domain binding motif at their C terminus. Through interactions with PDZ domains, this motif may endow the PLC-beta isozyme with specific roles in GPCR signaling events that occur in compartmentalized regions of the plasma membrane. In this study, we identified the interaction of PLC-beta3 with Shank2, a PDZ domain-containing multimodular scaffold in the postsynaptic density (PSD).

View Article and Find Full Text PDF

A number of signaling molecules contain small pleckstrin homology (PH) domains capable of binding phosphoinositides or proteins. Phospholipase C (PLC)-gamma1 has two putative PH domains, an NH(2)-terminal (PH(1)) and a split PH domain (nPH(2) and cPH(2)). We previously reported that the split PH domain of PLC-gamma1 binds to phosphatidylinositol 4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P(2)) (Chang et al.

View Article and Find Full Text PDF

Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) has two pleckstrin homology (PH) domains, an N-terminal domain and a split PH domain. Here we show that pull down of NIH3T3 cell extracts with PLC-gamma1 PH domain-glutathione S-transferase fusion proteins, followed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry, identified beta-tubulin as a binding protein of both PLC-gamma1 PH domains. Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of alpha- and beta-tubulin heterodimers in all eukaryotic cells.

View Article and Find Full Text PDF

FTY720, a synthetic sphingoid base analog, was examined as a new sphingosine kinase inhibitor, which converts endogenous sphingosine into its phosphate form. With 20 microM of FTY720, sphingosine accumulated in the LLC-PK(1) cells in a time- and dose-dependent manner. The FTY720 treated cells showed a high concentration of fragmented DNA, a high caspase-3 like activity and TUNEL staining cells.

View Article and Find Full Text PDF

Mammalian phospholipase D (PLD) is considered a key enzyme in the transmission signals from various receptors including muscarinic receptors. PLD activation is a rapid and transient process, but a negative regulator has not been found that inhibits signal-dependent PLD activation. Here, for the first time, we report that tubulin binding to PLD2 is an inhibition mechanism for muscarinic receptor-linked PLD2 activation.

View Article and Find Full Text PDF

The screening of small synthetic compound libraries is a useful means of identifying molecules that modulate various cellular responses. We screened more than 10,000 different small compounds and identified three synthetic compounds that stimulate arachidonic acid (AA) release in a combinational manner in neutrophil-like differentiated HL60 cells. These three compounds were designated as AARIC-1, -2, and -3, representing AA release inducing compounds-1, -2, and -3.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs), a group of persistent and widespread environmental pollutants, are considered to be immunotoxic, carcinogenic, and to induce apoptosis. However, the cellular mechanisms underlying the action of PCBs have not been established. Here, we investigated the effects of PCBs on the induction of cyclooxygenase-2 (COX-2).

View Article and Find Full Text PDF

Sorting nexins (SNXs) containing the Phox (PX) domain are implicated in the regulation of membrane trafficking and sorting processes of epithelial growth factor receptor (EGFR). In this study, we investigated whether SNX16 regulates EGF-induced cell signaling by regulating EGFR trafficking. SNX16 is localized in early and recycling endosomes via its PX domain.

View Article and Find Full Text PDF

Phospholipase C-gamma1 (PLC-gamma1), which interacts with a variety of signaling molecules through its two Src homology (SH) 2 domains and a single SH3 domain has been implicated in the regulation of many cellular functions. We demonstrate that PLC-gamma1 acts as a guanine nucleotide exchange factor (GEF) of dynamin-1, a 100 kDa GTPase protein, which is involved in clathrin-mediated endocytosis of epidermal growth factor (EGF) receptor. Overexpression of PLC-gamma1 increases endocytosis of the EGF receptor by increasing guanine nucleotide exchange activity of dynamin-1.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) stimulates Na(+)/H(+) exchanger 3 (NHE3) activity in opossum kidney proximal tubule (OK) cells by increasing the apical membrane amount of NHE3. This occurs by stimulation of exocytic trafficking of NHE3 to the apical plasma membrane by an E3KARP-dependent mechanism. However, it is still unclear how E3KARP leads to the LPA-induced exocytosis of NHE3.

View Article and Find Full Text PDF

To date, 12 phospholipase C (PLC) isozymes have been identified in mammals, and they are divided into five classes, beta-, gamma-, delta-, epsilon-, and zeta-type. PLCdelta-type is reported to be composed of four isozymes, PLCdelta1-delta4. Here we report that a screening for mouse PLCdelta2 from a BAC library with primers that amplify a specific region of bovine PLCdelta2 resulted in isolation of one clone containing the mouse PLCdelta4 gene.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that LPA(2), but not the other LPA receptor isoforms, specifically interacts with Na(+)/H(+) exchanger regulatory factor2 (NHERF2).

View Article and Find Full Text PDF