Alzheimer's disease (AD) is a progressive neurodegenerative disease accompanied by neurotoxicity, excessive inflammation, and cognitive impairment. The peroxisome proliferator-activated receptor (PPAR) δ is a potential target for AD. However, its regulatory mechanisms and therapeutic potential in AD remain unclear.
View Article and Find Full Text PDFAs a defense mechanism against deleterious stimuli, inflammation plays a vital role in the development of many disorders, including atherosclerosis, inflammatory bowel disease, experimental autoimmune encephalomyelitis, septic and non-septic shock, and non-alcoholic fatty liver disease (NAFLD). Despite the serious adverse effects of extended usage, traditional anti-inflammatory medications, such as steroidal and non-steroidal anti-inflammatory medicines (NSAIDs), are commonly used for alleviating symptoms of inflammation. The PPARδ subtype of peroxisome proliferator-activated receptors (PPARs) has attracted interest because of its potential for reducing inflammation and related disorders.
View Article and Find Full Text PDFPsiguadial B (8), and its fluoro- (8a), chloro- (8b), and bromo- (8c) derivatives were synthesized using a sodium acetate-catalyzed single step coupling of three components: β-caryophyllene (5), diformylphloroglucinol (11), and benzaldehyde (12). These compounds efficiently and dose-dependently decreased HO-induced cell death, a quantitative marker of cell death, in primary cultures of mouse cortical neurons. Psiguadial B also decreased neuronal death and accumulation of ROS induced by FeCl in cortical cultures.
View Article and Find Full Text PDFThe convergent and enantioselective synthesis of a highly potent human peroxisome proliferator-activated receptor delta agonist is presented. More specifically, the thiazoline structure, which constitutes the biosynthetically distinctive core structure of pulicatin (a secondary metabolite of symbiotic bacteria), was synthesized from a commercially available and inexpensive chiral pool of l-threonine.
View Article and Find Full Text PDFCardiovascular disease, which is caused by unregulated platelet aggregation, is one of the main causes of deaths worldwide. Many studies have focused on natural products with antiplatelet effects as a safe alternative therapy to prevent the disease. In this context, an in-house chemical library was screened to find natural products capable of inhibiting the interaction between platelet integrin αIIbβ3 and fibrinogen, which is an essential step in platelet aggregation.
View Article and Find Full Text PDF