Behavior can vary greatly even between genetically identical animals, but what determines such individuality? New work reveals that inter-individual differences in wiring of visual interneurons in Drosophila, arising from stochastic developmental events, underlie fly-specific object orientation abilities.
View Article and Find Full Text PDFInvertebrate species have significantly contributed to neuroscience owing to the accessibility they provide to cellular- and molecular-level understanding of brain functions. Somatotopic action selection is one of the key features of animal behavior, and studying this process in invertebrates is potentially a sweet spot in understanding the general relationship between neuronal morphology, circuit structure, and animal behavior. In this review, we introduce circuit architectures that realize somatotopic action selection, from simple reflexes to patterned motor outputs, in different invertebrate species.
View Article and Find Full Text PDFAnimals adaptively respond to a tactile stimulus by choosing an ethologically relevant behavior depending on the location of the stimuli. Here, we investigate how somatosensory inputs on different body segments are linked to distinct motor outputs in Drosophila larvae. Larvae escape by backward locomotion when touched on the head, while they crawl forward when touched on the tail.
View Article and Find Full Text PDF