Osteoarthritis (OA) is a chronic disability that significantly impairs quality of life. OA is one of the most prevalent joint pathologies in the world, characterized by joint pain and stiffness due to the degeneration of articular cartilage and the remodeling of subchondral bone. OA pathogenesis is unique in that it involves simultaneous reparative and degradative mechanisms.
View Article and Find Full Text PDFWe report one of the unusual presentations of disseminated gonococcal infection. This case report describes a 24-year-old woman who presented with disseminated gonococcal infection manifesting as meningitis. Cerebrospinal fluid (CSF) and throat swab PCR were positive for Blood and CSF cultures were negative for bacterial growth.
View Article and Find Full Text PDFScientific societies aiming to foster inclusion of scientists from underrepresented (UR) backgrounds among their membership often delegate primary responsibility for this goal to a diversity-focused committee. The National Science Foundation has funded the creation of the Alliance to Catalyze Change for Equity in STEM Success (ACCESS), a meta-organization bringing together representatives from several such STEM society committees to serve as a hub for a growing community of practice. Our goal is to coordinate efforts to advance inclusive practices by sharing experiences and making synergistic discoveries about what works.
View Article and Find Full Text PDFThe fundamental mechanism underlying negative-ion catalysis involves bond-strength breaking in the transition state (TS). Doubly-charged atomic/molecular anions are proposed as novel dynamic tunable catalysts, as demonstrated in water oxidation into peroxide. Density Functional Theory TS calculations have found a tunable energy activation barrier reduction ranging from 0.
View Article and Find Full Text PDFDiversity-focused committees continue to play essential roles in the efforts of professional scientific societies to foster inclusion and facilitate the professional development of underrepresented minority (URM) young scientists in their respective scientific disciplines. Until recently, the efforts of these committees have remained independent and disconnected from one another. Funding from the National Science Foundation has allowed several of these committees to come together and form the Alliance to Catalyze Change for Equity in STEM Success, herein referred to as ACCESS.
View Article and Find Full Text PDFWe first explore negative-ion formation in fullerenes C to C through low-energy electron elastic scattering total cross sections calculations using our Regge-pole methodology. Then, the formed negative ions C to C are used to investigate the catalysis of water oxidation to peroxide and water synthesis from H and O. The exploited fundamental mechanism underlying negative-ion catalysis involves hydrogen bond strength-weakening/breaking in the transition state.
View Article and Find Full Text PDFThe electronic characteristics of a planar covalent organic framework (COF) on graphene are investigated by means of dispersion-corrected density functional theory. The aromatic central molecule of the COF acts as an electron donor to graphene, while the linker of the COF acts as an electron acceptor. The concerted interaction between the filled orbitals of the central molecule and empty orbitals of the linker promotes the formation of planar COF networks on graphene.
View Article and Find Full Text PDFGraphene's adhesive properties owing to inherent van der Waals interactions become increasingly relevant in the nanoscale regime. Polymer self-assembly via graphene-mediated noncovalent interactions offers a powerful tool for the creation of anisotropic nanopatterned systems. Here, we report the supramolecular self-assembly of biofunctional-modified poly(2-methoxystyrene) on graphene nanoribbons prepared by unzipping multiwalled carbon nanotubes.
View Article and Find Full Text PDFWe have studied the electronic characteristics of chemically modified single-walled carbon nanotubes by oxygen doping using first-principles density-functional calculations. The oxygen doping, a controlled [2 + 1] cycloaddition scheme, is shown to modify the π-conjugation and impact on the near-infrared band gaps. The implications of tailoring the electronic structure of oxygen doped carbon nanomaterials for future device applications are discussed.
View Article and Find Full Text PDFNanocomposites of cured epoxy resin reinforced by single-walled carbon nanotubes exhibit a plethora of interesting behaviors at the molecular level. We have employed a combination of force-field-based molecular mechanics and first-principles calculations to study the corresponding binding and charge-transfer behavior. The simulation study of various nanotube species and curing agent configurations provides insight into the optimal structures in lieu of interfacial stability.
View Article and Find Full Text PDFTHIS STUDY SOUGHT TO EVALUATE the ability of gingival crevicular fluid (GCF) elastase to predict attachment and bone loss in human periodontitis. Thirty subjects who were medically healthy and had a history of progressive periodontitis were studied with an automated probe. Five sites in each patient were monitored bi-monthly for a 6-month period for attachment loss.
View Article and Find Full Text PDF