Despite remarkable progress during the past decade, eradication of established tumors by targeted cancer therapy and cancer immunotherapy remains an uphill task. Herein, we report on a combination approach for eradicating established mouse melanoma. Our approach employs the use of tumor selective chemotherapy in combination with dendritic cell (DC) targeted DNA vaccination.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
Zinc oxide nanoparticles (ZnO NPs) are currently among the most promising nanomaterials for theranostics. However, they suffer from some drawbacks that could prevent their application in nanomedicine as theranostic agents. The doping of ZnO NPs can be effectively exploited to enhance the already-existing ZnO properties and introduce completely new functionalities in the doped material.
View Article and Find Full Text PDFSmart nanoparticles for medical applications have gathered considerable attention due to an improved biocompatibility and multifunctional properties useful in several applications, including advanced drug delivery systems, nanotheranostics and in vivo imaging. Among nanomaterials, zinc oxide nanoparticles (ZnO NPs) were deeply investigated due to their peculiar physical and chemical properties. The large surface to volume ratio, coupled with a reduced size, antimicrobial activity, photocatalytic and semiconducting properties, allowed the use of ZnO NPs as anticancer drugs in new generation physical therapies, nanoantibiotics and osteoinductive agents for bone tissue regeneration.
View Article and Find Full Text PDF: ARID1A is postulated to be a tumor suppressor gene owing to loss-of-function mutations in human pancreatic ductal adenocarcinomas (PDAC). However, its role in pancreatic pathogenesis is not clear despite recent studies using genetically engineered mouse (GEM) models. We aimed at further understanding of its direct functional role in PDAC, using a combination of GEM model and PDAC cell lines.
View Article and Find Full Text PDFBackground: The importance of inhibiting the kinases of the DDR pathway for radiosensitizing cancer cells is well established. Cancer cells exploit these kinases for their survival, which leads to the development of resistance towards DNA damaging therapeutics.
Objective: In this article, the focus is on targeting the key mediator of the DDR pathway, the ATM kinase.
Zinc oxide nanocrystals (ZnO-NCs) doped with transition metal elements or rare earth elements can be probed for magnetic resonance imaging to be used as a molecular imaging technique for accurate diagnosis of various diseases. Herein, we use Mn as a candidate of transition metal elements and Gd as a presenter of rare earth elements. We report an easy and fast coprecipitation method exploiting oleic acid to synthesize spherical-shaped, small-sized doped ZnO-NCs.
View Article and Find Full Text PDFThe presence of leaky vasculature and the lack of lymphatic drainage of small structures by the solid tumors formulate nanoparticles as promising delivery vehicles in cancer therapy. In particular, among various nanoparticles, the mesoporous silica nanoparticles (MSN) exhibit numerous outstanding features, including mechanical thermal and chemical stability, huge surface area and ordered porous interior to store different anti-cancer therapeutics with high loading capacity and tunable release mechanisms. Furthermore, one can easily decorate the surface of MSN by attaching ligands for active targeting specifically to the cancer region exploiting overexpressed receptors.
View Article and Find Full Text PDFPancreatic cancer is a devastating disease that is largely refractory to currently available treatment strategies. Therapeutic resistance is partially attributed to the dense stromal reaction of pancreatic ductal adenocarcinoma tumors that includes a pervasive infiltration of immunosuppressive (M2) macrophages. Nab-paclitaxel (trade name Abraxane) is a nanoparticle albumin-bound formulation of paclitaxel that, in combination with gemcitabine, is currently the first-line treatment for pancreatic cancer.
View Article and Find Full Text PDFPrior studies reported significant anticancer activities of ceramides. However, anticancer activities of homoserine based ceramides have not been tested. With a view to compare the anticancer activity of ceramides and homoceramides, in the present study, we have synthesized four serine based and four homoserine based C8-ceramide analogues.
View Article and Find Full Text PDFCurcumin, because of its distinguishing ability to inhibit activation of transcription factor linked to chemoresistance and drug transporters, is now being co-administered with various potent anti-cancer drugs. In the present study, we report on such potentiating capabilities of curcumin in anti-angiogenic cancer therapy. With a view to simultaneously deliver curcumin and doxorubicin to tumor vasculature in anti-angiogenic cancer therapy, herein we report on the design & synthesis of a tumor vasculature targeting pegylated RGDK-lipopeptide.
View Article and Find Full Text PDFIncreasing number of Phase I/II clinical studies have demonstrated clinical potential of curcumin for treatment of various types of human cancers. Despite significant anti-tumor efficacies and bio-safety profiles of curcumin, poor systemic bioavailability is retarding its clinical success. Efforts are now being directed toward developing stable formulations of curcumin using various drug delivery systems.
View Article and Find Full Text PDFEver since the finding that αvβ3 integrin receptors are over expressed on the endothelial cell surfaces of tumor vasculatures relative to normal resting vasculatures was disclosed in 1994, αvβ3 integrin receptor selective systems are finding increasing applications both for targeting anti-cancer drugs/genes selectively to tumor vasculatures and for imaging growing tumors. Among the cyclic peptide based integrin antagonists identified through both phage display and structure-activity studies, mainly αvβ3 integrin selective cyclic peptide c(RGDfK-) has found most widespread exploitations for targeting chemotherapeutic drugs/genes to both tumor and tumor vasculatures in anti-angiogenic cancer therapy. Herein we show that a lipopeptide containing widely acclaimed αvβ3 integrin receptor selective cyclic RGDfK ligand in its head-group area can effectively deliver genes into both the endothelial and tumor cells via all the three widely used integrin receptors namely αvβ3, αvβ5 & α5β1 integrins.
View Article and Find Full Text PDF