Lesions with bone loss may require autologous grafts, which are considered the gold standard; however, natural or synthetic biomaterials are alternatives that can be used in clinical situations that require support for bone neoformation. Collagen and hydroxyapatite have been used for bone repair based on the concept of biomimetics, which can be combined with chitosan, forming a scaffold for cell adhesion and growth. However, osteoporosis caused by gonadal hormone deficiency can thus compromise the expected results of the osseointegration of scaffolds.
View Article and Find Full Text PDFMetastasis-associated macrophages (MAM) promote persistent growth of breast cancer cells at the metastatic site and are, thus, an attractive therapeutic target to treat breast cancer metastasis, a leading cause of cancer-related death in women. However, the precise mechanisms behind MAM-mediated metastatic tumor outgrowth have not been fully elucidated. Using mouse models of metastatic breast cancer, we showed that MAMs uniquely expressed hepatocyte growth factor (HGF) in metastatic tumors.
View Article and Find Full Text PDFThe tumor microenvironment is a complex network of cells that support tumor progression and malignancy. It has been demonstrated that tumor cells can educate the immune system to promote a tumor-friendly environment. Among all these immune cells, tumor-associated macrophages (TAMs) are well represented and their presence in mouse models has been shown to promote tumor progression and metastasis.
View Article and Find Full Text PDFPulmonary metastasis of breast cancer cells is promoted by a distinct population of macrophages, metastasis-associated macrophages (MAMs), which originate from inflammatory monocytes (IMs) recruited by the CC-chemokine ligand 2 (CCL2). We demonstrate here that, through activation of the CCL2 receptor CCR2, the recruited MAMs secrete another chemokine ligand CCL3. Genetic deletion of CCL3 or its receptor CCR1 in macrophages reduces the number of lung metastasis foci, as well as the number of MAMs accumulated in tumor-challenged lung in mice.
View Article and Find Full Text PDFMuscle-invasive forms of urothelial carcinomas are responsible for most mortality in bladder cancer. Finding new treatments for invasive bladder tumours requires adequate animal models to decipher the mechanisms of progression, in particular the way tumours interact with their microenvironment. Herein, using the murine bladder tumour cell line MB49 and its more aggressive variant MB49-I, we demonstrate that the adaptive immune system efficiently limits progression of MB49, whereas MB49-I has lost tumour antigens and is insensitive to adaptive immune responses.
View Article and Find Full Text PDFMilk fat globule-epidermal growth factor-factor VIII (MFGE8), also called lactadherin or SED1, is a secreted integrin-binding protein that promotes elimination of apoptotic cells by phagocytes leading to tolerogenic immune responses, and vascular endothelial growth factor (VEGF)-induced angiogenesis: two important processes for cancer development. Here, by transcriptomic analysis of 228 biopsies of bladder carcinomas, we observed overexpression of MFGE8 during tumor development, correlated with expression of genes involved in cell adhesion or migration and in immune responses, but not in VEGF-mediated angiogenesis. To test whether MFGE8 expression was instrumental in bladder tumor development, or a simple consequence of this development, we used genetic ablation in a mouse model of carcinogen-induced bladder carcinoma.
View Article and Find Full Text PDFBlood Cells Mol Dis
January 2006
Exosomes are vesicles of endocytic origin secreted spontaneously by dendritic cells (DCs). We have shown previously that exosomes can transfer antigen or MHC-peptide complexes between DCs, thus potentially amplifying the immune response. We had also identified milk fat globule EGF/factor VIII (MFG-E8), also called lactadherin, as one of the major exosomal proteins.
View Article and Find Full Text PDF