JAMA Cardiol
February 2025
Importance: Filamin C truncating variants (FLNCtv) are a rare cause of cardiomyopathy with heterogeneous phenotypic presentations. Despite a high incidence of life-threatening ventricular arrhythmias and sudden cardiac death (SCD), reliable risk predictors to stratify carriers of FLNCtv are lacking.
Objective: To determine factors predictive of SCD/major ventricular arrhythmias (MVA) in carriers of FLNCtv.
Hypertrophic cardiomyopathy (HCM) is a genetic disease characterized by unexplained left ventricular hypertrophy (LVH), diastolic dysfunction, and increased sudden-death risk. Early detection of the phenotypic expression of the disease in genetic carriers without LVH (Gen+/Phen-) is crucial for emerging therapies. This clinical study aims to identify echocardiographic predictors of phenotypic development in Gen+/Phen-.
View Article and Find Full Text PDFActin-binding filamin C (FLNC) is expressed in cardiomyocytes, where it localizes to Z-discs, sarcolemma, and intercalated discs. Although FLNC truncation variants () are an established cause of arrhythmias and heart failure, changes in biomechanical properties of cardiomyocytes are mostly unknown. Thus, we investigated the mechanical properties of human-induced pluripotent stem cells-derived cardiomyocytes (hiPSC-CMs) carrying .
View Article and Find Full Text PDFTruncating mutations in filamin C () are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with truncating mutations.
View Article and Find Full Text PDFBackground: Truncating variants in filamin C (FLNC) can cause arrhythmogenic cardiomyopathy (ACM) through haploinsufficiency. Noncanonical splice-altering variants may contribute to this phenotype.
Objective: The purpose of this study was to investigate the clinical and functional consequences of a recurrent FLNC intronic variant of uncertain significance (VUS), c.
Fibrotic tissues share many common features with neoplasms where there is an increased stiffness of the extracellular matrix (ECM). In this review, we present recent discoveries related to the role of the mechanosensitive ion channel Piezo1 in several diseases, especially in regulating tumor progression, and how this can be compared with cardiac mechanobiology. Based on recent findings, Piezo1 could be upregulated in cardiac fibroblasts as a consequence of the mechanical stress and pro-inflammatory stimuli that occurs after myocardial injury, and its increased activity could be responsible for a positive feedback loop that leads to fibrosis progression.
View Article and Find Full Text PDFtruncating mutations () are prevalent causes of inherited dilated cardiomyopathy (DCM), with a high risk of developing arrhythmogenic cardiomyopathy. We investigated the molecular mechanisms of mutant FLNC in the pathogenesis of arrhythmogenic DCM (a-DCM) using patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). We demonstrated that iPSC-CMs from two patients with different mutations displayed arrhythmias and impaired contraction.
View Article and Find Full Text PDFDilated cardiomyopathy (DCM) is one of the most common cardiac phenotypes caused by mutations of lamin A/C (LMNA) gene in humans. In our study, a cohort of 57 patients who underwent heart transplant for dilated cardiomyopathy was screened for variants in LMNA. We identified a synonymous variant c.
View Article and Find Full Text PDFBackground: Filamin C truncating variants () cause a form of arrhythmogenic cardiomyopathy: the mode of presentation, natural history, and risk stratification of remain incompletely explored. We aimed to develop a risk profile for refractory heart failure and life-threatening arrhythmias in a multicenter cohort of carriers.
Methods: carriers were identified from 10 tertiary care centers for genetic cardiomyopathies.
Clinical effects induced by arrhythmogenic cardiomyopathy (ACM) originate from a large spectrum of genetic variations, including the missense mutation of the lamin A/C gene (), D192G. The aim of our study was to investigate the biophysical and biomechanical impact of the D192G mutation on neonatal rat ventricular fibroblasts (NRVF). The main findings in mutated NRVFs were: (i) cytoskeleton disorganization (actin and intermediate filaments); (ii) decreased elasticity of NRVFs; (iii) altered cell-cell adhesion properties, that highlighted a strong effect on cellular communication, in particular on tunneling nanotubes (TNTs).
View Article and Find Full Text PDFSingle-cell adhesion measured with atomic force microscopy (AFM) offers outstanding time and force resolution and allows the investigation of many important phenomena with unmatched precision. However, this technique suffers from serious practical limitations that hinder its effective application to a broader set of situations. Here we propose a different strategy based on the fabrication of large cantilevers and on the culture of the cells directly on them.
View Article and Find Full Text PDFPurpose Of Review: Dilated cardiomyopathy (DCM), which include genetic and nongenetic forms, is the most common form of cardiomyopathy. DCM is characterized by left ventricular or biventricular dilation with impaired contraction. In the United States, DCM is a burden to healthcare that accounts for approximately 10,000 deaths and 46,000 hospitalizations annually.
View Article and Find Full Text PDFThis editorial aims to summarize the eight scientific papers published in the Special Issue "Genetics and Molecular Pathogenesis of Non-ischemic Cardiomyopathies" [...
View Article and Find Full Text PDFAims: Arrhythmogenic cardiomyopathy (ACM) encompasses a genetically heterogeneous group of myocardial diseases whose manifestations are sudden cardiac death, cardiac arrhythmias, heart failure, and in a subset fibro-adipogenic infiltration of the myocardium. Mutations in the TMEM43 gene, encoding transmembrane protein 43 (TMEM43) are known to cause ACM. The purpose of the study was to gain insights into the molecular pathogenesis of ACM caused by TMEM43 haploinsufficiency.
View Article and Find Full Text PDFArrhythmogenic cardiomyopathy (ACM) is a heritable myocardial disease that manifests with cardiac arrhythmias, syncope, sudden cardiac death, and heart failure in the advanced stages. The pathological hallmark of ACM is a gradual replacement of the myocardium by fibroadiposis, which typically starts from the epicardium. Molecular genetic studies have identified causal mutations predominantly in genes encoding for desmosomal proteins; however, non-desmosomal causal mutations have also been described, including genes coding for nuclear proteins, cytoskeleton componentsand proteins involved in excitation-contraction coupling.
View Article and Find Full Text PDFArrhythmogenic cardiomyopathy (ACM) is a heritable cardiac disease characterized by fibrotic or fibrofatty myocardial replacement, associated with an increased risk of ventricular arrhythmias and sudden cardiac death. Originally described as a disease of the right ventricle, ACM is currently recognized as a biventricular entity, due to the increasing numbers of reports of predominant left ventricular or biventricular involvement. Research over the last 20 years has significantly advanced our knowledge of the etiology and pathogenesis of ACM.
View Article and Find Full Text PDFBackground Mutations in the gene, encoding LMNA (lamin A/C), causes distinct disorders, including dilated cardiomyopathies, collectively referred to as laminopathies. The genes (coding and noncoding) and regulatory pathways controlled by LMNA in the heart are not completely defined. Methods and Results We analyzed cardiac transcriptome from wild-type, loss-of-function (), and gain-of-function ( injected with adeno-associated virus serotype 9 expressing LMNA) mice with normal cardiac function.
View Article and Find Full Text PDFGiven the clinical effect of laminopathies, understanding lamin mechanical properties will benefit the treatment of heart failure. Here we report a mechano-dynamic study of mutations in neonatal rat ventricular myocytes (NRVM) using single cell spectroscopy with Atomic Force Microscopy (AFM) and measured changes in beating force, frequency and contractile amplitude of selected mutant-expressing cells within cell clusters. Furthermore, since beat-to-beat variations can provide clues on the origin of arrhythmias, we analyzed the beating rate variability using a time-domain method which provides a Poincaré plot.
View Article and Find Full Text PDFPurpose Of Review: The purpose of this review is to provide an update on lamin A/C (LMNA)-related cardiomyopathy and discuss the current recommendations and progress in the management of this disease. LMNA-related cardiomyopathy, an inherited autosomal dominant disease, is one of the most common causes of dilated cardiomyopathy and is characterized by steady progression toward heart failure and high risks of arrhythmias and sudden cardiac death.
Recent Findings: We discuss recent advances in the understanding of the molecular mechanisms of the disease including altered cell biomechanics, which may represent novel therapeutic targets to advance the current management approach, which relies on standard heart failure recommendations.
Rationale: Mutations in the LMNA gene, encoding LMNA (lamin A/C), are responsible for laminopathies. Dilated cardiomyopathy (DCM) is a major cause of mortality and morbidity in laminopathies.
Objective: To gain insights into the molecular pathogenesis of DCM in laminopathies.
Circ Arrhythm Electrophysiol
October 2017