Among sickle cell anemia (SCA) complications, proliferative sickle cell retinopathy (PSCR) is one of the most important, being responsible for visual impairment in 10-20% of affected eyes. The aim of this study was to identify differentially expressed genes (DEGs) present in pathways that may be implicated in the pathophysiology of PSCR from the transcriptome profile analysis of endothelial progenitor cells. RNA-Seq was used to compare gene expression profile of circulating endothelial colony-forming cells (ECFCs) from HbSS patients with and without PSCR.
View Article and Find Full Text PDFPregnancy in Sickle Cell Disease (SCD) women is associated to increased risk of clinical and obstetrical complications. Placentas from SCD pregnancies can present increased abnormal findings, which may lead to placental insufficiency, favoring adverse perinatal outcome. These placental abnormalities are well known and reported, however little is known about the molecular mechanisms, such as epigenetics.
View Article and Find Full Text PDFUnlabelled: Although sickle cell anemia results from homozygosity for a single mutation at position 7 of the β-globin chain, the clinical aspects of this condition are very heterogeneous. Complications include leg ulcers, which have a negative impact on patients’ quality of life and are related to the severity of the disease. Nevertheless, the complex pathogenesis of this complication has yet to be elucidated.
View Article and Find Full Text PDFAge-related macular degeneration is a multifactorial disease that can lead to vision impairment in older individuals. Although the etiology of age-related macular degeneration remains unknown, risk factors include age, ethnicity, smoking, hypertension, obesity, and genetic factors. Two main loci have been identified through genome-wide association studies, on chromosomes 1 and 10.
View Article and Find Full Text PDFSingle nucleotide polymorphisms (SNPs) are important markers in many studies that link DNA sequence variations to phenotypic changes; such studies are expected to advance the understanding of human physiology and elucidate the molecular basis of diseases. The DFNB1 locus, which contains the GJB2 and GJB6 genes, plays a key role in nonsyndromic hearing loss. Previous studies have identified important mutations in this locus, but the contribution of SNPs in the genes has not yet been much investigated.
View Article and Find Full Text PDFGenet Test Mol Biomarkers
October 2009
Mutations in GJB2 gene are the most common cause of nonsyndromic sensorineural recessive hearing loss. One specific mutation, c.35delG, is the most frequent in the majority of Caucasian populations and may account for up to 70% of all GJB2 mutations.
View Article and Find Full Text PDF