Filtration of biological liquids has been widely employed in biological, medical, and environmental investigations due to its convenience; many could be performed without energy and on-site, particularly protein separation. However, most available membranes are universal protein absorption or sub-fractionation due to molecule sizes or properties. SPMA, or syringe-push membrane absorption, is a quick and easy way to prepare biofluids for protein evaluation.
View Article and Find Full Text PDFSurface plasmon resonance (SPR) has been utilized in various optical applications, including biosensors. The SPR-based sensor is a gold standard for protein kinetic measurement due to its ultrasensitivity on the plasmonic metal surface. However, a slight change in the surface morphology, such as roughness or pattern, can significantly impact its performance.
View Article and Find Full Text PDFQuantitative phase imaging has been of interest to the science and engineering community and has been applied in multiple research fields and applications. Recently, the data-driven approach of artificial intelligence has been utilized in several optical applications, including phase retrieval. However, phase images recovered from artificial intelligence are questionable in their correctness and reliability.
View Article and Find Full Text PDFWe propose a theoretical framework to analyze quantitative sensing performance parameters, including sensitivity, full width at half maximum, plasmonic dip position, and figure of merits for different surface plasmon operating conditions for a Kretschmann configuration. Several definitions and expressions of the figure of merit have been reported in the literature. Moreover, the optimal operating conditions for each figure of merit are, in fact, different.
View Article and Find Full Text PDFBiosensors (Basel)
March 2022
This research proposes an algorithm to preprocess photoplethysmography (PPG) and electrocardiogram (ECG) signals and apply the processed signals to the context aggregation network-based deep learning to achieve higher accuracy of continuous systolic and diastolic blood pressure monitoring than other reported algorithms. The preprocessing method consists of the following steps: (1) acquiring the PPG and ECG signals for a two second window at a sampling rate of 125 Hz; (2) separating the signals into an array of 250 data points corresponding to a 2 s data window; (3) randomizing the amplitude of the PPG and ECG signals by multiplying the 2 s frames by a random amplitude constant to ensure that the neural network can only learn from the frequency information accommodating the signal fluctuation due to instrument attachment and installation; (4) Fourier transforming the windowed PPG and ECG signals obtaining both amplitude and phase data; (5) normalizing both the amplitude and the phase of PPG and ECG signals using z-score normalization; and (6) training the neural network using four input channels (the amplitude and the phase of PPG and the amplitude and the phase of ECG), and arterial blood pressure signal in time-domain as the label for supervised learning. As a result, the network can achieve a high continuous blood pressure monitoring accuracy, with the systolic blood pressure root mean square error of 7 mmHg and the diastolic root mean square error of 6 mmHg.
View Article and Find Full Text PDFHere, we apply rigorous coupled-wave theory to analyze the optical phase imaging performance of scanning confocal surface plasmon microscope. The scanning confocal surface plasmon resonance microscope is an embedded interferometric microscope interfering between two integrated optical beams. One beam is provided by the central part around the normal incident angle of the back focal plane, and the other beam is the incident angles beyond the critical angle, exciting the surface plasmon.
View Article and Find Full Text PDFAngular scanning-based surface plasmon resonance measurement has been utilized in label-free sensing applications. However, the measurement accuracy and precision of the surface plasmon resonance measurements rely on an accurate measurement of the plasmonic angle. Several methods have been proposed and reported in the literature to measure the plasmonic angle, including polynomial curve fitting, image processing, and image averaging.
View Article and Find Full Text PDFThis paper provides a theoretical framework to analyze and quantify roughness effects on sensing performance parameters of surface plasmon resonance measurements. Rigorous coupled-wave analysis and the Monte Carlo method were applied to compute plasmonic reflectance spectra for different surface roughness profiles. The rough surfaces were generated using the low pass frequency filtering method.
View Article and Find Full Text PDFA deep learning algorithm for single-shot phase retrieval under a conventional microscope is proposed and investigated. The algorithm has been developed using the context aggregation network architecture; it requires a single input grayscale image to predict an output phase profile through deep learning-based pattern recognition. Surface plasmon resonance imaging has been employed as an example to demonstrate the capability of the deep learning-based method.
View Article and Find Full Text PDFSurface plasmon microscopy has been of interest to the science and engineering community and has been utilized in broad aspects of applications and studies, including biochemical sensing and biomolecular binding kinetics. The benefits of surface plasmon microscopy include label-free detection, high sensitivity, and quantitative measurements. Here, a theoretical framework to analyze and compare several non-interferometric surface plasmon microscopes is proposed.
View Article and Find Full Text PDFWe have recently reported in our previous work that one-dimensional dielectric grating can provide an open structure for Fabry-Perot mode excitation. The grating gaps allow the sample refractive index to fill up the grating spaces enabling the sample to perturb the Fabry-Perot mode resonant condition. Thus, the grating structure can be utilized as a refractive index sensor and provides convenient sample access from the open end of the grating with an enhanced figure of merit compared to the other thin-film technologies.
View Article and Find Full Text PDFIn our previous work, we have demonstrated that dielectric elastic grating can support Fabry-Perot modes and provide embedded optical interferometry to measure ultrasonic pressure. The Fabry-Perot modes inside the grating provide an enhancement in sensitivity and figure of merit compared to thin film-based Fabry-Perot structures. Here, in this paper, we propose a theoretical framework to explain that the elastic grating also supports dielectric waveguide grating mode, in which optical grating parameters control the excitation of the two modes.
View Article and Find Full Text PDFIn this paper, we propose a theoretical framework to explain how the transparent elastic grating structure can be employed to enhance the mechanical and optical properties for ultrasonic detection. Incident ultrasonic waves can compress the flexible material, where the change in thickness of the elastic film can be measured through an optical interferometer. Herein, the polydimethylsiloxane (PDMS) was employed in the design of a thin film grating pattern.
View Article and Find Full Text PDFA lateral shearing interferometric technique combined with an 11.6 μm polydimethylsiloxane (PDMS) transparent thin film is proposed and demonstrated for optical detection of ultrasound. We experimentally report the device change of reflectivity with pressure of 5.
View Article and Find Full Text PDFSurface plasmon Resonance (SPR) has recently been of interest for label-free voltage sensing. Several SPR structures have been proposed. However, making a quantitative cross-platform comparison for these structures is not straightforward due to (1) different SPR measurement mechanisms; (2) different electrolytic solution and concentration in the measurement; and (3) different levels of external applied potential.
View Article and Find Full Text PDFIn this paper, we report a theoretical framework on the effect of multiple resonances inside the dielectric cavity of insulator-insulator-metal-insulator (IIMI)-based surface plasmon sensors. It has been very well established that the structure can support both long-range surface plasmon polaritons (LRSPP) and short-range surface plasmon polaritons (SRSPP). We found that the dielectric resonant cavity under certain conditions can be employed as a resonator to enhance the LRSPP properties.
View Article and Find Full Text PDFIn this paper, we present a direct method to measure surface wave attenuation arising from both ohmic and coupling losses using our recently developed phase spatial light modulator (phase-SLM) based confocal surface plasmon microscope. The measurement is carried out in the far-field using a phase-SLM to impose an artificial surface wave phase profile in the back focal plane (BFP) of a microscope objective. In other words, we effectively provide an artificially engineered backward surface wave by modulating the Goos Hänchen (GH) phase shift of the surface wave.
View Article and Find Full Text PDFWe investigate the performance of surface plasmon and Fabry-Perot modes formed between two closely spaced layers. The motivation for this study is twofold: first, to look for modes that may be excited at lower incident angles compared to the usual Kretschmann configuration with similar or superior refractive index responsivity and, second, to develop a simple and applicable method to study these structures over a wide range of separations without recourse to the construction of ad hoc structures. Using back focal plane observation and appropriate signal processing, we show results for the Otto configuration at visible wavelengths at a range of separations not reported hitherto.
View Article and Find Full Text PDFThe advantages conferred by the physical, optical and electrochemical properties of graphene-based nanomaterials have contributed to the current variety of ultrasensitive and selective biosensor devices. In this review, we present the points of view on the intrinsic properties of graphene and its surface engineering concerned with the transduction mechanisms in biosensing applications. We explain practical synthesis techniques along with prospective properties of the graphene-based materials, which include the pristine graphene and functionalized graphene (i.
View Article and Find Full Text PDFOptical resonators are sensors well known for their high sensitivity and fast response time. These sensors have a wide range of applications, including in the biomedical fields, and cancer detection is one such promising application. Sensor diagnosis currently has many limitations, such as being expensive, highly invasive, and time-consuming.
View Article and Find Full Text PDFWe demonstrate numerically through rigorous coupled wave analysis (RCWA) that replacing the prism in the Otto configuration with gratings enables us to excite and control different modes and field patterns of surface phonon polaritons (SPhPs) through the incident wavelength and height of the Otto spacing layer. This modified Otto configuration provides us the following multiple modes, namely, SPhP mode, Fabry-Pérot (FP) cavity resonance, dielectric waveguide grating resonance (DWGR) and hybridized between different combinations of the above mentioned modes. We show that this modified grating-coupled Otto configuration has a highly confined field pattern within the structure, making it more sensitive to local refractive index changes on the SiC surface.
View Article and Find Full Text PDFIn previous work we demonstrated how a confocal microscope with a spatial light modulator in the back focal plane could perform accurate measurement of the k-vector of a propagating surface plasmon. This involved forming an embedded interferometer between light incident close to normal incidence (reference beam) and light incident at the angle to excite surface plasmons (sample beam). The signal from the interferometer was extracted by stepping the phase of the reference beam relative to the sample beam using a spatial light modulator; this requires at least 3 phase steps, which limits the speed of operation.
View Article and Find Full Text PDFWe describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle.
View Article and Find Full Text PDFThis paper applies rigorous diffraction theory to evaluate the minimum mass sensitivity of a confocal optical microscope designed to excite and detect surface plasmons operating on a planar metallic substrate. The diffraction model is compared with an intuitive ray picture which gives remarkably similar predictions. The combination of focusing the surface plasmons and accurate phase measurement mean that under favorable but achievable conditions detection of small numbers of molecules is possible, however, we argue that reliable detection of single molecules will benefit from the use of structured surfaces.
View Article and Find Full Text PDFIn previous publications [Opt. Express 20, 7388 (2012), Opt. Express 20, 28039 (2012)] we showed how a confocal configuration can form an surface plasmon microscope involving interference between a path involving the generation of surface plasmons and one involving a directly reflected beam.
View Article and Find Full Text PDF