Background: There is a critical need for minimally-invasive robust peripheral markers of neurodegenerative conditions. Peripheral RNA may be a powerful tool for in-depth tracking of biological processes in AD and related disorders. Here, we combine whole-blood microarray data from Alzheimer's Disease Neuroimaging Initiative (ADNI; N=743) and RNA-Seq from Translational Biomarkers in Aging and Dementia (TRIAD; N=77) and Montreal Neurological Institute (MNI; N=33) cohorts to predict cognitive performance across AD spectrum.
View Article and Find Full Text PDFParkinson's disease involves multiple neurotransmitter systems beyond the classical dopaminergic circuit, but their influence on structural and functional alterations is not well understood. Here, we use patient-specific causal brain modeling to identify latent neurotransmitter receptor-mediated mechanisms contributing to Parkinson's disease progression. Combining the spatial distribution of 15 receptors from post-mortem autoradiography with 6 neuroimaging-derived pathological factors, we detect a diverse set of receptors influencing gray matter atrophy, functional activity dysregulation, microstructural degeneration, and dendrite and dopaminergic transporter loss.
View Article and Find Full Text PDFSubthalamotomy using transcranial magnetic resonance-guided focused ultrasound (tcMRgFUS) is a novel and promising treatment for Parkinson's Disease (PD). In this study, we investigate if baseline brain imaging features can be early predictors of tcMRgFUS-subthalamotomy efficacy, as well as which are the post-treatment brain changes associated with the clinical outcomes. Towards this aim, functional and structural neuroimaging and extensive clinical data from thirty-five PD patients enrolled in a double-blind tcMRgFUS-subthalamotomy clinical trial were analyzed.
View Article and Find Full Text PDFDue to the marked interpersonal neuropathologic and clinical heterogeneity of Parkinson's disease (PD), current interventions are not personalized and fail to benefit all patients. Furthermore, we continue to lack well-established methods and clinical tests to tailor interventions at the individual level in PD. Here, we identify the genetic determinants of individual-tailored treatment needs derived from longitudinal multimodal neuroimaging data in 294 PD patients (PPMI data).
View Article and Find Full Text PDFAlthough functional connectivity has been extensively studied in MS, robust estimates of both stationary (static connectivity at the time) and dynamic (connectivity variation across time) functional connectivity has not been commonly evaluated and neither has its association to cognition. In this study, we focused on interhemispheric connections as previous research has shown links between anatomical homologous connections and cognition. We examined functional interhemispheric connectivity (IC) in MS during resting-state functional MRI using both stationary and dynamic strategies and related connectivity measures to processing speed performance.
View Article and Find Full Text PDFWe examined the influence of dysfunctional, non-lesional white matter on cognitive performance in multiple sclerosis (MS). Forty-six MS subjects were assessed using MRI-based myelin water imaging (MWI), and average myelin water fraction (MWF) values across 20 white matter regions of interest (ROIs) were determined. A data-fusion method, multiset canonical correlation analysis (MCCA), was used to investigate the multivariate, deterministic joint relations between MWF, executive function, and demographic and clinical characteristics.
View Article and Find Full Text PDFParkinson's Disease (PD) is associated with decreased ability to perform habitual tasks, relying instead on goal-directed behaviour subserved by different cortical/subcortical circuits, including parts of the putamen. We explored the functional subunits in the putamen in PD using novel dynamic connectivity features derived from resting state fMRI recorded from thirty PD subjects and twenty-eight age-matched healthy controls (HC). Dynamic functional segmentation of the putamina was obtained by determining the correlation between each voxel in each putamen along a moving window and applying a joint temporal clustering algorithm to establish cluster membership of each voxel at each window.
View Article and Find Full Text PDFGraphical network characteristics and nonstationary functional connectivity features, both derived from resting-state functional magnetic resonance imaging (rsfMRI) data, have been associated with cognitive performance in healthy subjects. How these features jointly relate to cognition in diseased states has not been investigated. In this study, 46 relapsing-remitting multiple sclerosis subjects underwent rsfMRI scans and a focused cognitive battery.
View Article and Find Full Text PDFThe clinicopathological correlations between aspects of cognition, disease severity and imaging in Parkinson's Disease (PD) have been unclear. We studied cognitive profiles, demographics, and functional connectivity patterns derived from resting-state fMRI data (rsFC) in 31 PD subjects from the Parkinson's Progression Markers Initiative (PPMI) database. We also examined rsFC from 19 healthy subjects (HS) from the Pacific Parkinson's Research Centre.
View Article and Find Full Text PDFThe authors explored the relations between clinical/demographic characteristics and performance on a neuropsychological battery (eight tests) in a cohort (N=46) of multiple sclerosis (MS) subjects. Findings resulted from a secondary analysis of a study examining the relationships between imaging biomarkers in MS and cognitive tasks of executive functioning. The objective was to determine whether the overlapping test results could be judiciously combined and associated with clinical/demographic variables.
View Article and Find Full Text PDF