Leucine-rich repeat kinase 2 (LRRK2) is a large, multidomain protein which contains a kinase domain and GTPase domain among other regions. Individuals possessing gain of function mutations in the kinase domain such as the most prevalent G2019S mutation have been associated with an increased risk for the development of Parkinson's disease (PD). Given this genetic validation for inhibition of LRRK2 kinase activity as a potential means of affecting disease progression, our team set out to develop LRRK2 inhibitors to test this hypothesis.
View Article and Find Full Text PDFA novel series of spiroimidazolone-based antagonists of the human glucagon receptor (hGCGR) has been developed. Our efforts have led to compound 1, N-((2H-tetrazol-5-yl)methyl)-4-((R)-1-((5r,8R)-8-(tert-butyl)-3-(3,5-dichlorophenyl)-2-oxo-1,4-diazaspiro[4.5]dec-3-en-1-yl)-4,4-dimethylpentyl)benzamide (SCH 900822), a potent hGCGR antagonist with exceptional selectivity over the human glucagon-like peptide-1 receptor.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2009
Vasopressin 1b (V1b) antagonists have been postulated as possible treatments for depression and anxiety. A novel series of potent and selective V1b antagonists has been identified starting from an in-house screen hit. The incorporation of a sulfonamide linker between a tetrahydroisoquinoline core and amino piperidine lead to the identification of a V1b antagonist with similar affinity for human and rat receptors.
View Article and Find Full Text PDFThe unsymmetrical nicotinamide-N-oxide moiety in compound 1 was replaced with symmetrical isonicotinamides as well as 4,6-dimethyl pyrimidine-5-carboxamides. Compound 16 from the latter set reduced the number of rotamers, improved potency of inhibiting UIV entry, slightly diminished the affinity for the muscarine receptors and showed very good oral absorption.
View Article and Find Full Text PDFThe synthesis and muscarinic binding properties of compounds based on the 1-[4-(4-arylsulfonyl)phenylmethyl]-4-(1-aroyl-4-piperidinyl)-piperazine skeleton are described. For compounds, substituted with appropriately configured methyl groups at the benzylic center and at the piperazine 2-position, high levels of selective, M(2) subtype affinity could be obtained, particularly when the terminal N-aroyl residue was ortho-substituted.
View Article and Find Full Text PDFA novel series of 2-(R)-methyl-substituted piperazines (e.g., 2) is described.
View Article and Find Full Text PDF