Publications by authors named "Sue Young Oh"

Article Synopsis
  • * Researchers optimized a protocol to produce soluble Cripto-1 protein using a T7 expression system, focusing on the challenges posed by the protein's complex structure due to its 12 cysteine residues.
  • * The optimized process included using specific concentrations of IPTG and imidazole for protein expression and purification, achieving over 26.6% recovery of Cripto-1, which then effectively inhibited CSC sphere formation and promoted differentiation.
View Article and Find Full Text PDF

The receptor activator of nuclear factor-kappa B ligand (RANKL) mediates osteoclast differentiation and functions by inducing Ca oscillations, activating mitogen-activated protein kinases (MAPKs), and activating nuclear factor of activated T-cells type c1 (NFATc1) via the RANK and tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) interaction. Reactive oxygen species (ROS) also plays an important role during osteoclastogenesis and Sestrin2, an antioxidant, maintains cellular homeostasis upon stress injury via regulation of ROS, autophagy, and inflammation. However, the role of Sestrin2 in osteoclastogenesis remains unknown.

View Article and Find Full Text PDF

The Drosophila lymph gland, the larval hematopoietic organ comprised of prohemocytes and mature hemocytes, has been a valuable model for understanding mechanisms underlying hematopoiesis and immunity. Three types of mature hemocytes have been characterized in the lymph gland: plasmatocytes, lamellocytes, and crystal cells, which are analogous to vertebrate myeloid cells, yet molecular underpinnings of the lymph gland hemocytes have been less investigated. Here, we use single-cell RNA sequencing to comprehensively analyze heterogeneity of developing hemocytes in the lymph gland, and discover previously undescribed hemocyte types including adipohemocytes, stem-like prohemocytes, and intermediate prohemocytes.

View Article and Find Full Text PDF

The receptor activator of nuclear factor-kappa B ligand (RANKL) induces osteoclastogenesis by induction of Ca2+ oscillation, calcineurin activation and translocation into the nucleus of nuclear factor of activated T cells type c1 (NFATc1). Homer proteins are scaffold proteins. They regulate Ca2+ signaling by modulating the activity of multiple Ca2+ signaling proteins.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined.

View Article and Find Full Text PDF

Telomerase is a unique ribonucleoprotein enzyme that is required for continued cell proliferation. To generate catalytically active telomerase, human telomerase reverse transcriptase (hTERT) must translocate to the nucleus and assemble with the RNA component of telomerase. The molecular chaperones heat shock protein 90 (Hsp90) and p23 maintain hTERT in a conformation that enables nuclear translocation.

View Article and Find Full Text PDF

Human telomeres associate with shelterin, a six-protein complex that protects chromosome ends from being recognized as sites of DNA damage. The shelterin subunit TRF2 (telomeric repeat-binding factor 2) protects telomeres by facilitating their organization into the protective capping structure. We have reported previously that the DNA-PKcs (DNA-dependent protein kinase catalytic subunit)-interacting protein KIP associates with telomerase through an interaction with hTERT (human telomerase reverse transcriptase).

View Article and Find Full Text PDF

Sestrins (Sesns) protect cells from oxidative stress. The mechanism underlying the antioxidant effect of Sesns has remained unknown, however. The Nrf2-Keap1 pathway provides cellular defense against oxidative stress by controlling the expression of antioxidant enzymes.

View Article and Find Full Text PDF

Aims: To define the mechanisms underlying pyrazole-induced oxidative stress and the protective role of peroxiredoxins (Prxs) and sulfiredoxin (Srx) against such stress.

Results: Pyrazole increased Srx expression in the liver of mice in a nuclear factor erythroid 2-related factor 2 (Nrf2)-dependent manner and induced Srx translocation from the cytosol to the endoplasmic reticulum (ER) and mitochondria. Pyrazole also induced the expression of CYP2E1, a primary reactive oxygen species (ROS) source for ethanol-induced liver injury, in ER and mitochondria.

View Article and Find Full Text PDF

2-Cysteine (Cys) peroxiredoxins (Prxs), which include mammalian Prxs I-IV, possess two conserved Cys residues that are readily oxidized by H(2)O(2) to form a disulfide. In the case of Prx I-III, the disulfide is reduced by thioredoxin, thus enabling these proteins to function as peroxidases. Prx IV was shown previously to be synthesized as a 31-kDa polypeptide with an NH(2)-terminal signal peptide that is subsequently cleaved to generate a 27-kDa form of the protein that is localized to the endoplasmic reticulum.

View Article and Find Full Text PDF

This study was undertaken to compare the labeling efficiencies of three iron-oxide based MRI contrast agents [Feridex, Resovist and monocrystalline iron oxide (MION)] and to evaluate their effects on the biological properties of human mesenchymal stem cells (hMSCs). The hMSCs were cultivated for 1 and 7 days after 24-h labeling with iron oxide nanoparticles (12.5 microg Fe/mL) in the presence of poly-L-lysine (0.

View Article and Find Full Text PDF

Telomere homeostasis is regulated by telomerase and a collection of associated proteins. Telomerase is, in turn, regulated by post-translational modifications of the rate-limiting catalytic subunit hTERT. Here we show that disruption of Hsp90 by geldanamycin promotes efficient ubiquitination and proteasome-mediated degradation of hTERT.

View Article and Find Full Text PDF

Low density lipoproteins (LDL) play important roles in the pathogenesis of atherosclerosis. Diabetes is associated with accelerated atherosclerosis leading to cardiovascular disease in diabetic patients. Although LDL stimulates the proliferation of arterial smooth muscle cells (SMC), the mechanisms are not fully understood.

View Article and Find Full Text PDF