Publications by authors named "Sue Yee Tan"

In solid tumors, the exhaustion of natural killer (NK) cells and cytotoxic T cells in the immunosuppressive tumor microenvironment poses challenges for effective tumor control. Conventional humanized mouse models of hepatocellular carcinoma patient-derived xenografts (HCC-PDX) encounter limitations in NK cell infiltration, hindering studies on NK cell immunobiology. Here, we introduce an improved humanized mouse model with restored NK cell reconstitution and infiltration in HCC-PDX, coupled with single-cell RNA sequencing (scRNA-seq) to identify potential anti-HCC treatments.

View Article and Find Full Text PDF

Background: Preclinical models are often used for cancer studies and evaluation of novel therapeutics. The relevance of these models has vastly improved with mice bearing a human immune system, especially in the context of immunotherapy. Nonetheless, cancer is an age-related disease, and studies often overlook the effects of aging.

View Article and Find Full Text PDF

In keeping with the rule of "form follows function", morphological aspects of a cell can reflect its role. Here, it is shown that the cellular granularity of a lymphocyte, represented by its intrinsic side scatter (SSC), is a potent indicator of its cell state and function. The granularity of a lymphocyte increases from naïve to terminal effector state.

View Article and Find Full Text PDF

The COVID-19 pandemic has sickened millions, cost lives and has devastated the global economy. Various animal models for experimental infection with SARS-CoV-2 have played a key role in many aspects of COVID-19 research. Here, we describe a humanized hACE2 (adenovirus expressing hACE2) NOD-SCID IL2Rγ (NIKO) mouse model and compare infection with ancestral and mutant (SARS-CoV-2-∆382) strains of SARS-CoV-2.

View Article and Find Full Text PDF

In recent decades, chimeric antigen receptor (CAR)-engineered immune effector cells have demonstrated promising antileukemic activity. Nevertheless, their efficacy remains unsatisfactory on solid cancers, plausibly due to the influence of tumor microenvironments (TME). In a novel mouse cancer model with a humanized immune system, tumor-infiltrating immunosuppressive leukocytes and exhausted programmed death protein-1 (PD-1) T cells were found, which better mimic patient TME, allowing the screening and assessment of immune therapeutics.

View Article and Find Full Text PDF

Background And Aims: Recent development of multiple treatments for human hepatocellular carcinoma (HCC) has allowed for the selection of combination therapy to enhance the effectiveness of monotherapy. Optimal selection of therapies is based on both HCC and its microenvironment. Therefore, it is critical to develop and validate preclinical animal models for testing clinical therapeutic solutions.

View Article and Find Full Text PDF

Advancements in science enable researchers to constantly innovate and create novel biologics. However, the use of non-human animal models during the development of biologics impedes identification of precise interactions between the human immune system and treatments. Due to lack of this understanding, adverse effects are frequently observed in healthy volunteers and patients exposed to potential biologics during clinical trials.

View Article and Find Full Text PDF

Non-alcoholic fatty liver disease (NAFLD) has been on a global rise. While animal models have rendered valuable insights to the pathogenesis of NAFLD, discrepancy with patient data still exists. Since non-alcoholic steatohepatitis (NASH) involves chronic inflammation, and CD4 T cell infiltration of the liver is characteristic of NASH patients, we established and characterized a humanized mouse model to identify human-specific immune response(s) associated with NAFLD progression.

View Article and Find Full Text PDF

Immune checkpoint blockade (ICB) monotherapy shows early promise for the treatment of nasopharyngeal carcinoma (NPC) in patients. Nevertheless, limited representative NPC models hamper preclinical studies to evaluate the efficacy of novel ICB and combination regimens. In the present study, we engrafted NPC biopsies in non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain-null (NSG) mice and established humanized mouse NPC-patient-derived xenograft (NPC-PDX) model successfully.

View Article and Find Full Text PDF

Recently a G-protein-coupled receptor, MAS Related GPR Family Member X2 (MRGPRX2), was identified as a specific receptor on human mast cells responsible for IgE independent adverse drug reactions (ADR). Although a murine homologue, Mrgprb2, has been identified for this receptor, its affinity for many ADR-causing drugs is poor making it difficult to undertake in vivo studies to examine mechanisms of ADR and to develop therapeutic strategies. Here, we have created humanized mice capable of generating MRGPRX2-expressing human MCs allowing for the study of MRGPRX2 MCs-mediated ADR in vitro as well as in vivo.

View Article and Find Full Text PDF

Since the discovery of enterovirus A71 (EV-A71) half a century ago, it has been recognized as the cause of large-scale outbreaks of hand-foot-and-mouth disease worldwide, particularly in the Asia-Pacific region, causing great concern for public health and economic burdens. Detailed mechanisms on the modulation of immune responses after EV-A71 infection have not been fully known, and the lack of appropriate models hinders the development of promising vaccines and drugs. In the present study, NOD- (NSG) mice with a human immune system (humanized mice) at the age of 4 weeks were found to be susceptible to a human isolate of EV-A71 infection.

View Article and Find Full Text PDF

Objective: As the current therapeutic strategies for human hepatocellular carcinoma (HCC) have been proven to have limited effectiveness, immunotherapy becomes a compelling way to tackle the disease. We aim to provide humanised mouse (humice) models for the understanding of the interaction between human cancer and immune system, particularly for human-specific drug testing.

Design: Patient-derived xenograft tumours are established with type I human leucocyte antigen matched human immune system in NOD- (NSG) mice.

View Article and Find Full Text PDF

Bats are an important animal model with long lifespans, low incidences of tumorigenesis and an ability to asymptomatically harbour pathogens. Currently, in vivo studies of bats are hampered due to their low reproduction rates. To overcome this, we transplanted bat cells from bone marrow (BM) and spleen into an immunodeficient mouse strain NOD-scid IL-2R (NSG), and have successfully established stable, long-term reconstitution of bat immune cells in mice (bat-mice).

View Article and Find Full Text PDF

Background And Objectives: This study aimed to determine the relationship between breakfast consumption and body weight status among primary and secondary school children in Malaysia.

Methods And Study Design: This nationwide cross-sectional study involved 5,332 primary school children aged 6 to 12 years and 3,000 secondary school children aged 13 to 17 years. Height and weight were measured and BMI-for-age was determined.

View Article and Find Full Text PDF

Mouse models have contributed to the bulk of knowledge on Systemic Lupus Erythematosus (SLE). Nevertheless, substantial differences exist between human and mouse immune system. We aimed to establish and characterise a SLE model mediated by human immune system.

View Article and Find Full Text PDF

Background: Xenotransplantation of patient-derived AML (acute myeloid leukemia) cells in NOD-scid Il2rγ (NSG) mice is the method of choice for evaluating this human hematologic malignancy. However, existing models constructed using intravenous injection in adult or newborn NSG mice have inferior engraftment efficiency, poor peripheral blood engraftment, or are difficult to construct.

Methods: Here, we describe an improved AML xenograft model where primary human AML cells were injected into NSG newborn pups intrahepatically.

View Article and Find Full Text PDF

Hepatitis C is a liver disease caused by infection of the Hepatitis C virus (HCV). Many individuals infected by the virus are unable to resolve the viral infection and develop chronic hepatitis, which can lead to formation of liver cirrhosis and cancer. To understand better how initial HCV infections progress to chronic liver diseases, we characterised the long term pathogenic effects of HCV infections with the use of a humanised mouse model (HIL mice) we have previously established.

View Article and Find Full Text PDF

Many immune parameters show circadian rhythms during the 24-hour day in mammals. The most striking circadian oscillation is the number of circulating immune cells that display an opposite rhythm between humans and mice. The physiological roles and mechanisms of circadian variations in mouse leukocytes are well studied, whereas for humans they remain unclear because of the lack of a proper model.

View Article and Find Full Text PDF

: The association between different types of breakfast meals and nutrient intakes has been studied to a lesser extent. : This study compared nutrient intakes at breakfast and throughout the day between Malaysian children who consumed ready-to-eat cereals (RTEC) and those who did not. : Anthropometric and dietary data for 1955 children aged 6-12 years from the MyBreakfast study were used in the analysis.

View Article and Find Full Text PDF

Background: The 2010 World Health Organisation (WHO) Infant and Young Child Feeding (IYCF) indicators are useful for monitoring feeding practices.

Methods: A total sample of 300 subjects aged 6 to 23 months was recruited from urban suburbs of Kuala Lumpur and Putrajaya. Compliance with each IYCF indicator was computed according to WHO recommendations.

View Article and Find Full Text PDF

Objective: HCV infection affects millions of people worldwide, and many patients develop chronic infection leading to liver cancers. For decades, the lack of a small animal model that can recapitulate HCV infection, its immunopathogenesis and disease progression has impeded the development of an effective vaccine and therapeutics. We aim to provide a humanised mouse model for the understanding of HCV-specific human immune responses and HCV-associated disease pathologies.

View Article and Find Full Text PDF

Hydrogels have gained significant attention as ideal delivery vehicles for protein drugs. However, the use of hydrogels for protein delivery has been restricted because their porous structures inevitably cause a premature leakage of encapsulated proteins. Here, we report a simple yet effective approach to regulate the protein release kinetics of hydrogels through the creation of microstructures, which serve as a reservoir, releasing their payloads in a controlled manner.

View Article and Find Full Text PDF

This study aimed to assess the physical activity levels of pediatric patients with acute leukemia undergoing chemotherapy. Thirty-eight pediatric patients and matched controls, aged 3-12 years old, were measured for weight, height, and other anthropometric parameters. Physical activity was assessed using actical accelerometer and activity log book.

View Article and Find Full Text PDF