Publications by authors named "Sue Richards"

Background: Cancer health research relies on large-scale cohorts to derive generalizable results for different populations. While traditional epidemiological cohorts often use costly random sampling or self-motivated, preselected groups, a shift toward health system-based cohorts has emerged. However, such cohorts depend on participants remaining within a single system.

View Article and Find Full Text PDF

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples.

View Article and Find Full Text PDF

Clinicians are encouraged to document the reasons for the use of a particular procedure or test, whether or not it is in conformance with this statement. Clinicians also are advised to take notice of the date this statement was adopted, and to consider other medical and scientific information that becomes available after that date. It also would be prudent to consider whether intellectual property interests may restrict the performance of certain tests and other procedures.

View Article and Find Full Text PDF

The Association for Molecular Pathology Variant Interpretation Testing Among Laboratories (VITAL) Working Group convened to evaluate the Standards and Guidelines for the Interpretation of Sequence Variants implementation into clinical practice, identify problematic classification rules, and define implementation challenges. Variants and associated clinical information were provided to volunteer respondents. Participant variant classifications were compared with intended consensus-derived classifications of the Working Group.

View Article and Find Full Text PDF

Purpose: Artificial intelligence (AI) and variant prioritization tools for genomic variant analysis are being rapidly developed for use in clinical diagnostic testing. However, their clinical utility and reliability are currently limited. Therefore, we performed a validation of a commercial AI tool (Moon) and a comprehensive reanalysis of previously collected clinical exome sequencing cases using an open-source variant prioritization tool (Exomiser) and the now-validated AI tool to test their feasibility in clinical diagnostics.

View Article and Find Full Text PDF

Pathogenic variants in the CFTR gene are causative of classic cystic fibrosis (CF) as well as some nonclassic CF phenotypes. In 2001, CF became the first target of pan-ethnic universal carrier screening by molecular methods. The American College of Medical Genetics and Genomics (ACMG) recommended a core panel of 23 disease-causing variants as the minimal set to be included in pan-ethnic carrier screening of individuals with no family history of the disease, and these variants were usually assessed using targeted methods.

View Article and Find Full Text PDF

The originally published version of this Article contained errors in Fig. 2. The numbers below the black arrowheads were incorrect; please see incorrect Figure in associated Correction.

View Article and Find Full Text PDF

A research study utilizing whole-genome sequence analysis for preconception carrier screening provided a genome-first detection of a severe de novo Factor VIII mutation in a woman with implications for pregnancy management and life-saving interventions of her newborn son, and a challenge to the existing paradigm regarding carrier testing.

View Article and Find Full Text PDF

Factor V Leiden and factor II c.*97G>A (formerly referred to as prothrombin 20210G>A) are the two most common genetic variants associated with venous thromboembolism (VTE). Testing for these variants is one of the most common referrals in clinical genetics laboratories.

View Article and Find Full Text PDF

Purpose: Clinical sequencing emerging in health care may result in secondary findings (SFs).

Methods: Seventy-four of 6240 (1.2%) participants who underwent genome or exome sequencing through the Clinical Sequencing Exploratory Research (CSER) Consortium received one or more SFs from the original American College of Medical Genetics and Genomics (ACMG) recommended 56 gene-condition pair list; we assessed clinical and psychosocial actions.

View Article and Find Full Text PDF

Advances in sequencing technologies permit the analysis of a larger selection of genes for preconception carrier screening. The study was designed as a sequential carrier screen using genome sequencing to analyze 728 gene-disorder pairs for carrier and medically actionable conditions in 131 women and their partners (n = 71) who were planning a pregnancy. We report here on the clinical laboratory results from this expanded carrier screening program.

View Article and Find Full Text PDF

Genomics-based carrier screening is one of many opportunities to use genomic information to inform medical decision making, but clinicians, health care delivery systems, and payers need to determine whether to offer screening and how to do so in an efficient, ethical way. To shed light on this issue, we conducted a study in the period 2014-17 to inform the design of clinical screening programs and guide further health services research. Many of our results have been published elsewhere; this article summarizes the lessons we learned from that study and offers policy insights.

View Article and Find Full Text PDF

Disclaimer: This Points to Consider document is designed as an educational resource to provide best practices for medical genetic clinicians, laboratories, and journals regarding the provision, publication, and dissemination of patient phenotypes in the context of genomic testing, clinical genetic practice, and research. While the goal of the document is the improvement of patient care, the considerations and practices described should not be considered inclusive of all proper considerations and practices or exclusive of others that are reasonably directed to obtaining the same goal. In determining the value of any practice, clinicians, laboratories, and journals should apply their own professional standards and judgment to the specific circumstances presented.

View Article and Find Full Text PDF

Purpose: We investigated the use of genome sequencing for preconception carrier testing. Genome sequencing could identify one or more of thousands of X-linked or autosomal recessive conditions that could be disclosed during preconception or prenatal counseling. Therefore, a framework that helps both clinicians and patients understand the possible range of findings is needed to respect patient preferences by ensuring that information about only the desired types of genetic conditions are provided to a given patient.

View Article and Find Full Text PDF

Population-based carrier screening is limited to well-studied or high-impact genetic conditions for which the benefits may outweigh the associated harms and costs. As the cost of genome sequencing declines and availability increases, the balance of risks and benefits may change for a much larger number of genetic conditions, including medically actionable additional findings. We designed an RCT to evaluate genomic clinical sequencing for women and partners considering a pregnancy.

View Article and Find Full Text PDF

Disclaimer: These recommendations are designed primarily as an educational resource for medical geneticists and other healthcare providers to help them provide quality medical services. Adherence to these recommendations is completely voluntary and does not necessarily assure a successful medical outcome. These recommendations should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed toward obtaining the same results.

View Article and Find Full Text PDF

Purpose: While the diagnostic success of genomic sequencing expands, the complexity of this testing should not be overlooked. Numerous laboratory processes are required to support the identification, interpretation, and reporting of clinically significant variants. This study aimed to examine the workflow and reporting procedures among US laboratories to highlight shared practices and identify areas in need of standardization.

View Article and Find Full Text PDF

Purpose: The aim of this study was to examine the performance of laboratories offering assessment for myotonic dystrophy type 1 (DM1) using external proficiency testing samples. DM1, a dominant disorder, has a prevalence of 1:20,000 due to the expansion of CTG trinucleotide repeats in the DMPK gene.

Methods: External proficiency testing administered by the College of American Pathologists/American College of Medical Genetics and Genomics distributes three samples twice yearly.

View Article and Find Full Text PDF

As genome or exome sequencing (hereafter genome-scale sequencing) becomes more integrated into standard care, carrier testing is an important possible application. Carrier testing using genome-scale sequencing can identify a large number of conditions, but choosing which conditions/genes to evaluate as well as which results to disclose can be complicated. Carrier testing generally occurs in the context of reproductive decision-making and involves patient values in a way that other types of genetic testing may not.

View Article and Find Full Text PDF