T follicular regulatory (Tfr) cells control the magnitude and specificity of the germinal centre reaction, but how regulation is contained to ensure generation of high-affinity antibody is unknown. Here we show that this balance is maintained by the reciprocal influence of interleukin (IL)-2 and IL-21. The number of IL-2-dependent FoxP3 regulatory T cells is increased in the peripheral blood of human patients with loss-of-function mutations in the IL-21 receptor (IL-21R).
View Article and Find Full Text PDFBackground: Smallpox was eradicated by a global program of inoculation with Vaccinia virus (VV). Robust VV-specific CD4 T-cell responses during primary infection are likely essential to controlling VV replication. Although there is increasing interest in cytolytic CD4 T-cells across many viral infections, the importance of these cells during acute VV infection is unclear.
View Article and Find Full Text PDFThe cytokine IL-21 has been shown to influence immune responses through both costimulatory effects on effector T cells and opposing inhibitory effects on T regulatory cells (Tregs). To distinguish the effect of IL-21 on the immune system from that of its effect on Tregs, we analyzed the role of IL-21/IL-21R signaling in mice made genetically deficient in IL-2, which exhibit a deficit in IL-2-dependent Foxp3 regulatory T cells and suffer from a fatal multiorgan inflammatory disease. Our findings demonstrate that in the absence of IL-21/IL-21R signaling, Il2(-/-) mice retained a deficiency in Tregs yet exhibited a reduced and delayed inflammatory disease.
View Article and Find Full Text PDFIL-21 is a member of the common γ-chain signaling family of cytokines. Analyses of the behavior of immune cells in response to IL-21 in vitro and studies of mice deficient in IL-21 or its receptor indicate that IL-21 has a role in lymphocyte activation, proliferation, differentiation, and survival. IL-21-producing CD4(+) Th cells constitute a broad array of helper subtypes including T follicular helper cells and Th17 cells.
View Article and Find Full Text PDFCD8(+) T cells are fundamental for immune-mediated clearance of viral infections and contribute to immune pathology in autoimmune diseases such as type 1 diabetes. To execute these functions, CD8(+) T cells must differentiate into CTLs, a process that is precisely regulated by a variety of cytokines, costimulatory molecules, and transcription factors. IL-21 is an IL-2 family cytokine and a growth factor for multiple lymphocyte effector lineages, including cytotoxic CD8(+) T cells.
View Article and Find Full Text PDFAims And Hypothesis: Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells.
View Article and Find Full Text PDFCTLA-4 is a potent inhibitor of T cell activation, primarily upon binding to its costimulatory ligands (B7.1 and B7.2) expressed on APCs.
View Article and Find Full Text PDFType 1 diabetes (T1D) is an autoimmune disease that shows familial aggregation in humans and likely has genetic determinants. Disease linkage studies have revealed many susceptibility loci for T1D in mice and humans. The mouse T1D susceptibility locus insulin-dependent diabetes susceptibility 3 (Idd3), which has a homologous genetic interval in humans, encodes cytokine genes Il2 and Il21 and regulates diabetes and other autoimmune diseases; however, the cellular and molecular mechanisms of this regulation are still being elucidated.
View Article and Find Full Text PDFIL-27 has recently been identified as a differentiation factor for the generation of IL-10-producing regulatory type 1 (Tr1) T cells. However, how IL-27 induces the expansion of Tr1 cells has not been elucidated. In this study we demonstrate that IL-27 drives the expansion and differentiation of IL-10-producing murine Tr1 cells by inducing three key elements: the transcription factor c-Maf, the cytokine IL-21, and the costimulatory receptor ICOS.
View Article and Find Full Text PDFCCR3 has been implicated as a co-receptor for human immunodeficiency virus type 1 (HIV-1), particularly in brain microglia cells. We sought to clarify the comparative roles of CCR3 and CCR5 in the central nervous system (CNS) HIV-1 infection and the potential utility of CCR3 as a target for manipulation via gene transfer. To target CCR3, we developed a single-chain antibody (SFv) and an interfering RNA (RNAi), R3-526.
View Article and Find Full Text PDFThe de novo generation of Foxp3+ regulatory T (Treg) cells in the peripheral immune compartment and the differentiation of Th17 cells both require TGF-beta, and IL-6 and IL-21 are switch factors that drive the development of Th17 cells at the expense of Treg cell generation. The major vitamin A metabolite all-trans retinoic acid (RA) not only enforces the generation of Treg cells but also inhibits the differentiation of Th17 cells. Herein we show that RA enhances TGF-beta signaling by increasing the expression and phosphorylation of Smad3, and this results in increased Foxp3 expression even in the presence of IL-6 or IL-21.
View Article and Find Full Text PDFBackground: The precise function of various resting and activated leukocyte subsets remains unclear. For instance, mast cells, basophils, and eosinophils play important roles in allergic inflammation but also participate in other immunologic responses. One strategy to understand leukocyte subset function is to define the expression and function of subset-restricted molecules.
View Article and Find Full Text PDFMitogen-activated protein kinases facilitate many cellular processes and are essential for immune cell function. Their activity is controlled by kinases and dual-specificity phosphatases. A comprehensive microarray analysis of human leukocytes identified DUSP2 (encoding the phosphatase PAC-1) as one of the most highly induced transcripts in activated immune cells.
View Article and Find Full Text PDFWe used a comprehensive collection of Affymetrix microarray datasets to ascertain which genes or molecules distinguish the known major subsets of human T cells. Our strategy allowed us to identify the genes expressed in most T cell subsets: TCR alphabeta+ and gammadelta+, three effector subsets (Th1, Th2, and T follicular helper cells), T central memory, T effector memory, activated T cells, and others. Our genechip dataset also allowed for identification of genes preferentially or exclusively expressed by T cells, compared with numerous non-T cell leukocyte subsets profiled.
View Article and Find Full Text PDFAsthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR), tissue remodeling, and airflow obstruction. The pathogenesis of asthma is only partly understood, and there is an urgent need for improved therapeutic strategies for this disease. Microarray technology has considerable promise as a tool for discovery of novel asthma therapeutic targets, although the field is still in its infancy.
View Article and Find Full Text PDFHuman monocyte-derived foam cell macrophages (HMFCs) are resistant to cholesterol efflux mediated by physiological acceptors. The role of the plasma membrane in regulating depletion of free cholesterol (FC) and of cholesteryl ester (CE) was investigated using cyclodextrins (CDs). HMFCs were incubated in media containing CDs (1.
View Article and Find Full Text PDF