J Colloid Interface Sci
January 2025
Hypothesis: Although antimicrobial peptides (AMPs) are a promising class of new antibiotics, their inherent susceptibility to degradation requires nanocarrier-mediated delivery. While cubosome nanocarriers have been extensively studied for delivery of AMPs, we do not currently understand why cubosome encapsulation improves antimicrobial efficacy for some compounds but not others. This study therefore aims to investigate the link between the mechanism of action and permeation efficiency of the peptides, their encapsulation efficacy, and the antimicrobial activity of these systems.
View Article and Find Full Text PDFHypothesis: Lyotropic liquid crystalline nanoparticles (LLCNPs) with complex internal nanostructures hold promise for drug delivery. Cubosomes, in particular, have garnered interest for their ability to fuse with cell membranes, potentially bypassing endosomal escape challenges and improving cellular uptake. The mesostructure of nanoparticles plays a crucial role in cellular interactions and uptake.
View Article and Find Full Text PDFHypothesis: Cubosomes made from the inverse micellar cubic mesophase (I) with Fd3m symmetry possess a unique structure of closely packed inverse micelles. These have prospective functionality in sustained drug release. In this study, we hypothesised that similar to fatty acids, various fatty acetate compounds can induce the formation of micellar Fd3m cubosomes in monoolein (MO) nanoparticles.
View Article and Find Full Text PDF