Publications by authors named "Sue In Chae"

Article Synopsis
  • - The study highlights the impressive photoluminescence properties of metal nanoclusters, particularly gold cluster assemblies (GCA), which have improved quantum yields compared to traditional luminescent materials like quantum dots.
  • - Researchers synthesized GCA using a method that involves Zn-ion-mediated assembly and mercaptocarboxylic acid, resulting in ultrabright greenish-blue fluorescence with quantum yields reaching up to 90%.
  • - The GCA's ability to flexibly disassemble and reassemble, along with its strong fluorescence, suggests promising applications in biodegradable and trackable drug delivery systems.
View Article and Find Full Text PDF

The formation of inorganic nanoparticles has been understood based on the classical crystallization theory described by a burst of nucleation, where surface energy is known to play a critical role, and a diffusion-controlled growth process. However, this nucleation and growth model may not be universally applicable to the entire nanoparticle systems because different precursors and surface ligands are used during their synthesis. Their intrinsic chemical reactivity can lead to a formation pathway that deviates from a classical nucleation and growth model.

View Article and Find Full Text PDF

We report a facile two-step method to synthesize nanostructured P2-Na2/3MnO2via ligand exchange and intercalation of sodium ions into ultrathin manganese oxide nanoplates. Sodium storage performance of the synthesized material shows a high capacity (170 mA h g-1) and an excellent rate performance.

View Article and Find Full Text PDF

SnSe emerges as a new class of thermoelectric materials since the recent discovery of an ultrahigh thermoelectric figure of merit in its single crystals. Achieving such performance in the polycrystalline counterpart is still challenging and requires fundamental understandings of its electrical and thermal transport properties as well as structural chemistry. Here we demonstrate a new strategy of improving conversion efficiency of bulk polycrystalline SnSe thermoelectrics.

View Article and Find Full Text PDF

There is an urgent need to develop metal-free, low cost, durable, and highly efficient catalysts for industrially important oxygen evolution reactions. Inspired by natural geodes, unique melamine nanogeodes are successfully synthesized using hydrothermal process. Sulfur-modified graphitic carbon nitride (S-modified g-CN ) electrocatalysts are obtained by annealing these melamine nanogeodes in situ with sulfur.

View Article and Find Full Text PDF

Thermoelectrics directly converts waste heat into electricity and is considered a promising means of sustainable energy generation. While most of the recent advances in the enhancement of the thermoelectric figure of merit (ZT) resulted from a decrease in lattice thermal conductivity by nanostructuring, there have been very few attempts to enhance electrical transport properties, i.e.

View Article and Find Full Text PDF

Large-scale colloidal synthesis and integration of uniform-sized molybdenum disulfide (MoS ) nanosheets for a flexible resistive random access memory (RRAM) array are presented. RRAM using MoS nanosheets shows a ≈10 000 times higher on/off ratio than that based on exfoliated MoS . The good uniformity of the MoS nanosheets allows wafer-scale system integration of the RRAM array with pressure sensors and quantum-dot light-emitting diodes.

View Article and Find Full Text PDF

Deformable full-colour light-emitting diodes with ultrafine pixels are essential for wearable electronics, which requires the conformal integration on curvilinear surface as well as retina-like high-definition displays. However, there are remaining challenges in terms of polychromatic configuration, electroluminescence efficiency and/or multidirectional deformability. Here we present ultra-thin, wearable colloidal quantum dot light-emitting diode arrays utilizing the intaglio transfer printing technique, which allows the alignment of red-green-blue pixels with high resolutions up to 2,460 pixels per inch.

View Article and Find Full Text PDF