Genome Med
March 2019
Genome Med
February 2019
Background: Neurodevelopmental disorders are genetically and phenotypically heterogeneous encompassing developmental delay (DD), intellectual disability (ID), autism spectrum disorders (ASDs), structural brain abnormalities, and neurological manifestations with variants in a large number of genes (hundreds) associated. To date, a few de novo mutations potentially disrupting TCF20 function in patients with ID, ASD, and hypotonia have been reported. TCF20 encodes a transcriptional co-regulator structurally related to RAI1, the dosage-sensitive gene responsible for Smith-Magenis syndrome (deletion/haploinsufficiency) and Potocki-Lupski syndrome (duplication/triplosensitivity).
View Article and Find Full Text PDFBackground: Germline mutations in the CHRNG gene that encodes the γ subunit of the embryonal acetylcholine receptor may cause the non-lethal Escobar variant (EVMPS) or the lethal form (LMPS) of multiple pterygium syndrome (MPS). In addition CHRNG mutations and mutations in other components of the embryonal acetylcholine receptor may present with fetal akinesia deformation sequence (FADS) without pterygia.
Methods: In order to elucidate further the role of CHRNG mutations in MPS/FADS, this study evaluated the results of CHRNG mutation analysis in 100 families with a clinical diagnosis of MPS/FADS.
We used an exome-sequencing strategy and identified an allelic series of NOTCH2 mutations in Hajdu-Cheney syndrome, an autosomal dominant multisystem disorder characterized by severe and progressive bone loss. The Hajdu-Cheney syndrome mutations are predicted to lead to the premature truncation of NOTCH2 with either disruption or loss of the C-terminal proline-glutamate-serine-threonine-rich proteolytic recognition sequence, the absence of which has previously been shown to increase Notch signaling.
View Article and Find Full Text PDFPatients with autism spectrum disorder (ASD) frequently harbour chromosome rearrangements and segmental aneuploidies, which allow us to identify candidate genes. In a boy with mild facial dysmorphisms, speech delay and ASD, we reconstructed by karyotyping, FISH and SNP array-based segmental aneuploidy profiling a highly complex chromosomal rearrangement involving at least three breaks in chromosome 1 and seven breaks in chromosome 7. Chromosome banding revealed an inversion of region 7q32.
View Article and Find Full Text PDF3-M syndrome is an autosomal-recessive primordial growth disorder characterized by significant intrauterine and postnatal growth restriction. Mutations in the CUL7 gene are known to cause 3-M syndrome. In 3-M syndrome patients that do not carry CUL7 mutations, we performed high-density genome-wide SNP mapping to identify a second locus at 2q35-q36.
View Article and Find Full Text PDF