Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca and Mg) from crushed basalt applied each fall over 4 y (50 t ha y) gave a conservative time-integrated cumulative CDR potential of 10.
View Article and Find Full Text PDFPlant-derived volatiles mediate interactions among plants, pathogenic viruses, and viral vectors. These volatile-dependent mechanisms have not been previously demonstrated belowground, despite their likely significant role in soil ecology and agricultural pest impacts. We investigated how the plant virus, tobacco rattle virus (TRV), attracts soil nematode vectors to infected plants.
View Article and Find Full Text PDFPlant ecologists and molecular biologists have long considered the hypothesis of a trade-off between plant growth and defence separately. In particular, how genes thought to control the growth-defence trade-off at the molecular level relate to trait-based frameworks in functional ecology, such as the slow-fast plant economics spectrum, is unknown. We grew 49 phenotypically diverse rice genotypes in pots under optimal conditions and measured growth-related functional traits and the constitutive expression of 11 genes involved in plant defence.
View Article and Find Full Text PDFEstimating plasticity of leaf silicon (Si) in response to abiotic and biotic factors underpins our comprehension of plant defences and stress resistance in natural and agroecosystems. However, how nitrogen (N) addition and intraspecific plant-plant interactions affect Si concentration remains unclear.We grew 19 durum wheat genotypes ( ssp.
View Article and Find Full Text PDFAssociational resistance to herbivore and pathogen attack is a well documented ecological phenomenon and, if applied to agriculture, may reduce impact of pests and diseases on crop yields without recourse to pesticides. The value of associational resistance through intercropping, planting multiple crops alongside each other, as a sustainable control method remains unclear, due to variable outcomes reported in the published literature. We performed a meta-analysis to provide a quantitative assessment of benefits of intercropping for target plant resistance to plant-parasitic nematodes and soil-borne diseases.
View Article and Find Full Text PDFGrasses accumulate large amounts of silicon (Si) which acts as a highly effective physical defence against insect herbivory, however recent evidence shows that Si supplementation also modifies plant secondary metabolite concetrations. Changes in plant secondary metabolites concentrations can have cascading effects on higher trophic levels, such as parasitoids, as they are dependent on the host herbivore for growth and development. However, relatively little is known about how Si application affects higher trophic levels.
View Article and Find Full Text PDFCool season grasses associate asymptomatically with foliar endophytic fungi in a symbiosis where spp. protects the plant from a number of biotic and abiotic stresses. Furthermore, many grass species can accumulate large quantities of silicon (Si), which also alleviates a similar range of stresses.
View Article and Find Full Text PDFThe uptake and deposition of silicon (Si) as silica phytoliths is common among land plants and is associated with a variety of functions. Among these, herbivore defense has received significant attention, particularly with regard to grasses and grasslands. Grasses are well known for their high silica content, a trait which has important implications ranging from defense to global Si cycling.
View Article and Find Full Text PDFMany modern rice varieties have been intensively selected for high-yielding performance under irrigated conditions, reducing their genetic diversity and potentially increasing their susceptibility to abiotic stresses such as drought. In this study, we tested benefits for stress tolerance of introducing DNA segments from wild ancestor to the modern cultivar cv () by applying a gradient of osmotic stress to both parents and seven introgressed lines. Shoot growth of had a high tolerance to osmotic stress, and the number of total root tips increased under mild osmotic stress.
View Article and Find Full Text PDFLand-based enhanced rock weathering (ERW) is a biogeochemical carbon dioxide removal (CDR) strategy aiming to accelerate natural geological processes of carbon sequestration through application of crushed silicate rocks, such as basalt, to croplands and forested landscapes. However, the efficacy of the approach when undertaken with basalt, and its potential co-benefits for agriculture, require experimental and field evaluation. Here we report that amending a UK clay-loam agricultural soil with a high loading (10 kg/m ) of relatively coarse-grained crushed basalt significantly increased the yield (21 ± 9.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) form symbioses with the roots of most plant species, including cereals. AMF can increase the uptake of nutrients including nitrogen (N) and phosphorus (P), and of silicon (Si) as well as increase host resistance to various stresses. Plants can simultaneously interact with above-ground insect herbivores such as aphids, which can alter the proportion of plant roots colonized by AMF.
View Article and Find Full Text PDFArbuscular mycorrhizal fungal (AMF) colonisation of plant roots is one of the most ancient and widespread interactions in ecology, yet the systemic consequences for plant secondary chemistry remain unclear. We performed the first metabolomic investigation into the impact of AMF colonisation by Rhizophagus irregularis on the chemical defences, spanning above- and below-ground tissues, in its host-plant ragwort (Senecio jacobaea). We used a non-targeted metabolomics approach to profile, and where possible identify, compounds induced by AMF colonisation in both roots and shoots.
View Article and Find Full Text PDFPlants suffer multiple, simultaneous assaults from above and below ground. In the laboratory, pests and/or pathogen attack are commonly studied on an individual basis. The molecular response of the plant to attack from multiple organisms and the interaction of different defense pathways is unclear.
View Article and Find Full Text PDFGlobal warming is predicted to increase in the future, with detrimental consequences for rainfed crops that are dependent on natural rainfall (i.e. non-irrigated).
View Article and Find Full Text PDFUnderstanding interactions between grasses and their herbivores is central to the conservation of species-rich grasslands and the protection of our most important crops against pests. Grasses employ a range of defenses against their natural enemies; silicon-based defenses have been shown to be one of the most effective. Silicon (Si) is laid down on the leaf surface as spines and other sharp bodies, known as phytoliths, making grasses abrasive and their foliage indigestible to herbivores.
View Article and Find Full Text PDFThe objective of this study was to evaluate whether silicon (Si) amendments, known to have a prophylactic role against biotrophic and hemibiotrophic pathogens, could protect soybean against Phytophthora sojae. To fulfill this objective, the initial challenge was to develop a method of inoculation that reproduced the natural infection process while allowing regular Si feeding to the plants. In a first set of experiments, inoculation of P.
View Article and Find Full Text PDFGrasses have been considered to primarily employ tolerance in lieu of defense in mitigating damage caused by herbivory. Yet a number of mechanisms have been identified in grasses, which may deter feeding by grazers. These include enhanced silicon uptake, hosting of toxin-producing endophytic fungi and induction of secondary metabolites.
View Article and Find Full Text PDFSome grass species mount a defensive response to grazing by increasing their rate of uptake of silica from the soil and depositing it as abrasive granules in their leaves. Increased plant silica levels reduce food quality for herbivores that feed on these grasses. Here we provide empirical evidence that a principal food species of an herbivorous rodent exhibits a delayed defensive response to grazing by increasing silica concentrations, and present theoretical modelling that predicts that such a response alone could lead to the population cycles observed in some herbivore populations.
View Article and Find Full Text PDFMandatory training for nursing staff is vital to ensure the safety of patients, staff and visitors. This article discusses using objective structured clinical examination to structure this training.
View Article and Find Full Text PDFThe need for policy makers to understand science and for scientists to understand policy processes is widely recognised. However, the science-policy relationship is sometimes difficult and occasionally dysfunctional; it is also increasingly visible, because it must deal with contentious issues, or itself becomes a matter of public controversy, or both. We suggest that identifying key unanswered questions on the relationship between science and policy will catalyse and focus research in this field.
View Article and Find Full Text PDF