Currently, no approved therapeutics exist to treat or prevent infections induced by Ebola viruses, and recent events have demonstrated an urgent need for rapid discovery of new treatments. Repurposing approved drugs for emerging infections remains a critical resource for potential antiviral therapies. We tested ~2600 approved drugs and molecular probes in an in vitro infection assay using the type species, Zaire ebolavirus.
View Article and Find Full Text PDFEbola viruses remain a substantial threat to both civilian and military populations as bioweapons, during sporadic outbreaks, and from the possibility of accidental importation from endemic regions by infected individuals. Currently, no approved therapeutics exist to treat or prevent infection by Ebola viruses. Therefore, we performed an in vitro screen of Food and Drug Administration (FDA)- and ex-US-approved drugs and selected molecular probes to identify drugs with antiviral activity against the type species Zaire ebolavirus (EBOV).
View Article and Find Full Text PDFEbola virus (EBOV) is an enveloped RNA virus that causes hemorrhagic fever in humans and non-human primates. Infection requires internalization from the cell surface and trafficking to a late endocytic compartment, where viral fusion occurs, providing a conduit for the viral genome to enter the cytoplasm and initiate replication. In a concurrent study, we identified clomiphene as a potent inhibitor of EBOV entry.
View Article and Find Full Text PDFCellular entry of Ebola virus (EBOV), a deadly hemorrhagic fever virus, is mediated by the viral glycoprotein (GP). The receptor-binding subunit of GP must be cleaved (by endosomal cathepsins) in order for entry and infection to proceed. Cleavage appears to proceed through 50-kDa and 20-kDa intermediates, ultimately generating a key 19-kDa core.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2011
Ebolavirus (Ebov), an enveloped virus of the family Filoviridae, causes hemorrhagic fever in humans and nonhuman primates. The viral glycoprotein (GP) is solely responsible for virus-host membrane fusion, but how it does so remains elusive. Fusion occurs after virions reach an endosomal compartment where GP is proteolytically primed by cathepsins.
View Article and Find Full Text PDFEbolavirus is a hemorrhagic fever virus associated with high mortality. Although much has been learned about the viral lifecycle and pathogenesis, many questions remain about virus entry. We recently showed that binding of the receptor binding region (RBR) of the ebolavirus glycoprotein (GP) and infection by GP pseudovirions increase on cell adhesion independently of mRNA or protein synthesis.
View Article and Find Full Text PDFMost class I fusion proteins exist as trimers of dimers composed of a receptor binding and a fusion subunit. In their postfusion forms, the three fusion subunits form trimers of hairpins consisting of a central coiled coil (formed by the N-terminal helices), an intervening sequence, and a region containing the C helix (and flanking strands) that runs antiparallel to and packs in the grooves of the N-terminal coiled coil. For filoviruses and most retroviruses, the intervening sequence includes a "chain reversal region" consisting of a short stretch of hydrophobic residues, a Gly-Gly pair, a CX(6)CC motif, and a bulky hydrophobic residue.
View Article and Find Full Text PDFTo study vesicular stomatitis virus (VSV) entry and uncoating, we generated a recombinant VSV encoding a matrix (M) protein containing a C-terminal tetracysteine Lumio tag (rVSV-ML) that could be fluorescently labeled using biarsenical compounds. Quantitative confocal microscopy showed that there is a transient loss of fluorescence at early times after the initiation of endocytosis of rVSV-ML-Green (rVSV-MLG) virions, which did not occur when cells were treated with bafilomycin A1. The reduction in fluorescence occurred 5 to 10 min postentry, followed by a steady increase in fluorescence intensity from 15 to 60 min postentry.
View Article and Find Full Text PDFIntegrins are involved in the binding and internalization of both enveloped and nonenveloped viruses. By using 3 distinct cell systems-CHO cells lacking expression of alpha(5)beta(1)-integrin, HeLa cells treated with siRNA to alpha(5)-integrin, and mouse beta(1)-integrin knockout fibroblasts, we show that alpha(5)beta(1)-integrin is required for efficient infection by pseudovirions bearing the ebolavirus glycoprotein (GP). These integrins are necessary for viral entry but not for binding or internalization.
View Article and Find Full Text PDFEntry of ebolavirus (EBOV) into cells is mediated by its glycoprotein (GP(1,2)), a class I fusion protein whose structure was recently determined (J. E. Lee et al.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
August 2008
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins.
View Article and Find Full Text PDFEbola virus infects a wide variety of adherent cell types, while nonadherent cells are found to be refractory. To explore this correlation, we compared the ability of pairs of related adherent and nonadherent cells to bind a recombinant Ebola virus receptor binding domain (EboV RBD) and to be infected with Ebola virus glycoprotein (GP)-pseudotyped particles. Both human 293F and THP-1 cells can be propagated as adherent or nonadherent cultures, and in both cases adherent cells were found to be significantly more susceptible to both EboV RBD binding and GP-pseudotyped virus infection than their nonadherent counterparts.
View Article and Find Full Text PDFWe previously showed that the cysteines flanking the internal fusion peptide of the avian sarcoma/leukosis virus subtype A (ASLV-A) Env (EnvA) are important for infectivity and cell-cell fusion. Here we define the stage of fusion at which the cysteines are required. The flanking cysteines are dispensable for receptor-triggered membrane association but are required for the lipid mixing step of fusion, which, interestingly, displays a high pH onset and a biphasic profile.
View Article and Find Full Text PDFThe receptor for avian sarcoma/leukosis virus subtype A (ASLV-A), Tva, is the simplest member of the low density lipoprotein receptor family containing a single ligand-binding repeat (LBR). Most LBRs contain a central Trp (Trp33 in Tva) that is important for ligand binding and, for the low density lipoprotein receptor, is associated with familial hypercholesterolemia. The Tva ligand-binding module contains a second Trp (Trp48) that is part of a DEW motif present in a subset of LBRs.
View Article and Find Full Text PDFThe avian sarcoma/leukosis virus (ASLV) is activated for fusion by a two-step mechanism. For ASLV subgroup A (ASLV-A), association with its receptor (Tva) at neutral pH converts virions to a form that can bind target membranes and, in some assays, induce the lipid-mixing stage of fusion. Low pH is necessary to complete the fusion reaction.
View Article and Find Full Text PDFA general model has been proposed for the fusion mechanisms of class I viral fusion proteins. According to this model a metastable trimer, anchored in the viral membrane through its transmembrane domain, transits to a trimeric prehairpin intermediate, anchored at its opposite end in the target membrane through its fusion peptide. A subsequent refolding event creates a trimer of hairpins (often termed a six-helix bundle) in which the previously well-separated transmembrane domain and fusion peptide (and their attached membranes) are brought together, thereby driving membrane fusion.
View Article and Find Full Text PDFMethods Enzymol
December 2003
This chapter describes three assays to monitor receptor-induced association of the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus (ASLV) with target bilayers: (1) the original assay for monitoring binding of the EnvA ectodomain (EnvA-PI) to target membranes (liposomes), (2) a modified and miniaturized EnvA-PI-liposome binding assay, and (3) an assay to measure binding of intact sarcoma/leukosis virus subtype A (ASLV-A) virus particles to target membranes. These assays are also useful for studying other receptor-activated viral fusion proteins. When one viral glycoprotein and one “simple” host cell receptor are involved, it should be possible to develop assays directly analogous to those described above for studying Tva-induced binding of the EnvA ectodomain (EnvA-PI) to target membranes.
View Article and Find Full Text PDFWe previously showed that the envelope glycoprotein (EnvA) of avian sarcoma/leukosis virus subtype A (ASLV-A) binds to liposomes at neutral pH following incubation with its receptor, Tva, at >or=22 degrees C. We also provided evidence that ASLV-C fuses with cells at neutral pH. These findings suggested that receptor binding at neutral pH and >or=22 degrees C is sufficient to activate Env for fusion.
View Article and Find Full Text PDFWe report here on the generation of a mouse monoclonal antibody directed against Rous sarcoma virus (RSV) subgroup A Env that will be useful in functional and structural analysis of RSV Env, as well as in approaches employing the RCAS/Tva system for gene targeting. BALB/c mice were primed and given boosters twice with EnvA-expressing NIH 3T3 cells. Resulting hybridomas were tested by enzyme-linked immunosorbent assay against RCANBP virions and SU-A-immunoglobulin G immunoadhesin.
View Article and Find Full Text PDFRetroviral envelope proteins are heavily glycosylated. In some cases, glycosylation has been shown to be important for folding, protein stability, immune evasion, or receptor usage. The receptor-binding subunit (SU or gp85) of the envelope protein (EnvA) of the avian sarcoma/leukosis virus, subtype A (ASLV-A), contains 11 potential N-linked glycosylation sites (NXS/T).
View Article and Find Full Text PDF