Identical oscillators in the chimera state exhibit a mixture of coherent and incoherent patterns simultaneously. Nonlocal interactions and phase lag are critical factors in forming a chimera state within the Kuramoto model in Euclidean space. Here, we investigate the contributions of nonlocal interactions and phase lag to the formation of the chimera state in random networks.
View Article and Find Full Text PDFPhase transitions (PTs) are generally classified into second-order and first-order transitions, each exhibiting different intrinsic properties. For instance, a first-order transition exhibits latent heat and hysteresis when a control parameter is increased and then decreased across a transition point, whereas a second-order transition does not. Recently, hybrid percolation transitions (HPTs) are issued in diverse complex systems, in which the features of first-order and second-order PTs occur at the same transition point.
View Article and Find Full Text PDFUnderstanding of a hybrid percolation transitions (HPTs) induced by cluster coalescence, exhibiting a jump in the giant cluster size and a critical behavior of finite clusters, is fundamental and intriguing. Here, we uncover the underlying mechanism using the so-called restricted-random network model, in which clusters are ranked by size and partitioned into small- and large-cluster sets. As clusters are merged and their rankings are updated, they may move back and forth across the set boundary.
View Article and Find Full Text PDF