Publications by authors named "Sudipto Muhuri"

Dynein motors exhibit catch bonding, where the unbinding rate of the motors from microtubule filaments decreases with increasing opposing load. The implications of this catch bond on the transport properties of dynein-driven cargo are yet to be fully understood. In this context, optical trapping assays constitute an important means of accurately measuring the forces generated by molecular motor proteins.

View Article and Find Full Text PDF

Experiments performed using micro-patterned one dimensional collision assays have allowed a precise quantitative analysis of the collective manifestation of contact inhibition locomotion (CIL) wherein, individual migrating cells reorient their direction of motion when they come in contact with other cells. Inspired by these experiments, we present a discrete, minimal 1D Active spin model that mimics the CIL interaction between cells in one dimensional channels. We analyze the emergent collective behaviour of migrating cells in such confined geometries, as well as the sensitivity of the emergent patterns to driving forces that couple to cell motion.

View Article and Find Full Text PDF

Generation of mechanical oscillations is ubiquitous to a wide variety of intracellular processes, ranging from activity of muscle fibers to oscillations of the mitotic spindle. The activity of motors plays a vital role in maintaining the integrity of the mitotic spindle structure and generating spontaneous oscillations. Although the structural features and properties of the individual motors are well characterized, their implications on the functional behavior of motor-filament complexes are more involved.

View Article and Find Full Text PDF

In eukaryotic cells, motor proteins (MPs) bind to cytoskeletal filaments and move along them in a directed manner generating active stresses. During cell division a spindle structure of overlapping antiparallel microtubules forms whose stability and dynamics under the influence of MPs have been studied extensively. Although passive cross linkers (PCLs) are known to provide structural stability to a filamentous network, consequences of the interplay between ATP dependent active forces of MPs and passive entropic forces of PCLs on filamentous overlap remain largely unexplored.

View Article and Find Full Text PDF

We study a two-filament driven lattice gas model with oppositely directed species of particles moving on two parallel filaments with filament-switching processes and particle inflow and outflow at filament ends. The filament-switching process is correlated with the occupation number of the adjacent site such that particles switch filaments with finite probability only when oppositely directed particles meet on the same filament. This model mimics some of the coarse-grained features observed in context of microtubule-(MT) based intracellular transport, wherein cellular cargo loaded and off-loaded at filament ends are transported on multiple parallel MT filaments and can switch between the parallel microtubule filaments.

View Article and Find Full Text PDF

Recent experiments have demonstrated that dynein motors exhibit catch bonding behavior, in which the unbinding rate of a single dynein decreases with increasing force, for a certain range of force. Motivated by these experiments, we study the effect of catch bonding on unidirectional transport properties of cellular cargo carried by multiple dynein motors. We introduce a threshold force bond deformation (TFBD) model, consistent with the experiments, wherein catch bonding sets in beyond a critical applied load force.

View Article and Find Full Text PDF

We study a minimal lattice model which describes bidirectional transport of "particles" driven along a one-dimensional track, as is observed in microtubule based, motor protein driven bidirectional transport of cargo vesicles, lipid bodies, and organelles such as mitochondria. This minimal model, a multispecies totally asymmetric exclusion process (TASEP) with directional switching, can provide a framework for understanding the interplay between the switching dynamics of individual particles and the collective movement of particles in one dimension. When switching is much faster than translocation, the steady-state density and current profiles of the particles are homogeneous in the bulk and are well described by mean-field (MF) theory, as determined by comparison to a Monte Carlo simulation.

View Article and Find Full Text PDF

We introduce a multispecies lattice-gas model for motor protein driven collective cargo transport on cellular filaments. We use this model to describe and analyze the collective motion of interacting vesicle cargos being carried by oppositely directed molecular motors, moving on a single biofilament. Building on a totally asymmetric exclusion process to characterize the motion of the interacting cargos, we allow for mass exchange with the environment, input, and output at filament boundaries and focus on the role of interconversion rates and how they affect the directionality of the net cargo transport.

View Article and Find Full Text PDF