Reclamation of chromium-contaminated soil by bacteria is a big confront concerning to soil health restoration, food safety, and environmental protection. Herein, the chromium-resistant Bacillus aryabhattai CTSI-07 (MG757377) showed resistance to 1000 and 300 ppm of Cr(VI) in nutrient rich Luria Bertani (LB) and nutrient-deficient sucrose low phosphate (SLP) medium, respectively. It reduced 96.
View Article and Find Full Text PDFPHAs (polyhydroxyalkanoates) are the bio-polyester synthesized by different aerobic and anaerobic bacteria as energy storage granule. However, its synthesis by anaerobes or facultative anaerobes is an imperative part of their physiology via assimilating broad range of substrates than aerobes. Thus, three Gram positive facultative anaerobic PHAs producers viz.
View Article and Find Full Text PDFCatastrophic global accumulation of non-biodegradable plastic has led to efforts for production of alternative eco-friendly biopolymer. Here, we attempted to produce a biodegradable, cytocompatible and eco-friendly polyhydroxy-butyrate (PHB) from a pigmented Bacillus sp. C1 (2013) (KF626477) through submerged (SmF) and solid-state fermentation (SSF).
View Article and Find Full Text PDFThe microbially derived polyhydroxyalkanoates biopolymers could impact the global climate scenario by replacing the conventional non-degradable, petrochemical-based polymer. The biogenesis, characterization and properties of PHAs by species using renewable substrates have been elaborated by many for their wide applications. On the other hand species are advantageous over other bacteria due to their abundance even in extreme ecological conditions, higher growth rates even on cheap substrates, higher PHAs production ability, and the ease of extracting the PHAs.
View Article and Find Full Text PDF