In this paper, a framework is outlined to generate realistic artificial data (RAD) as a tool for comparing different models developed for safety analysis. The primary focus of transportation safety analysis is on identifying and quantifying the influence of factors contributing to traffic crash occurrence and its consequences. The current framework of comparing model structures using only observed data has limitations.
View Article and Find Full Text PDFTransp Res Part A Policy Pract
May 2022
In this study, we examine the influence of Coronavirus disease 2019 (COVID-19) on airline demand at the disaggregate resolution of airport. The primary focus of our proposed research effort is to develop a framework that provides a blueprint for airline demand recovery as COVID-19 cases evolve over time. Airline monthly demand data is sourced from Bureau of Transportation Statistics for 380 airports for 24 months from January 2019 through December 2020.
View Article and Find Full Text PDFBackground: Several research efforts have evaluated the impact of various factors including a) socio-demographics, (b) health indicators, (c) mobility trends, and (d) health care infrastructure attributes on COVID-19 transmission and mortality rate. However, earlier research focused only on a subset of variable groups (predominantly one or two) that can contribute to the COVID-19 transmission/mortality rate. The current study effort is designed to remedy this by analyzing COVID-19 transmission/mortality rates considering a comprehensive set of factors in a unified framework.
View Article and Find Full Text PDF