Publications by authors named "Sudipa Mal"

The TNM staging system is currently used to detect cancer stages. Regardless, a small proportion of cancer patients recur even after therapy, suggesting more specific molecular tools are required to justify the stage-specific detection and prompt cancer diagnosis. Thus, we aimed to explore the blood-based DNA methylation signature of metastatic nasopharyngeal carcinoma (NPC) to establish a holistic methylation biomarker panel.

View Article and Find Full Text PDF

As a part of viral cancer evolution, KSHV-infected human endothelial cells exert a unique transcriptional program upregulated mTORC1 signaling. This event makes them sensitive to mTOR inhibitors. Master transcriptional regulator PTEN acts as the prime regulator of mTOR and determining factor for mTOR inhibitory drug resistance and sensitivity.

View Article and Find Full Text PDF

Unlabelled: Nasopharyngeal Carcinoma (NPC) is one of the leading cancers in India's north-eastern (NE) region affecting a section of the population each year. A proportion of the NPC cases are observed to recur even after therapy, indicating the involvement of other factors. We aimed to explore the NPC and Epstein-Barr virus (EBV) burden in the NE region and investigate the prognostic factors for the NPC patients' poor survival and recurrence.

View Article and Find Full Text PDF

Background: The association of BAX -248 G>A and BCL2 -938 C>A with different cancers created conflicts.  We studied the correlation and the effect of these polymorphisms in patients with Nasopharyngeal Carcinoma (NPC).  Methods: PCR-RFLP and Sanger sequencing were used to detect polymorphisms.

View Article and Find Full Text PDF

Nasopharyngeal carcinoma (NPC) is a rare malignancy in most parts of the world, but is endemic in some ethnic groups. The association of NPC with the Epstein-Barr virus (EBV) is firmly established; however, the mechanism is still unclear. TLR9 is well known for its essential role in viral pathogen recognition and activation of innate immunity.

View Article and Find Full Text PDF

p53, p63, and p73, the members of the p53 family of proteins, are structurally similar proteins that play central roles regulating cell cycle and apoptotic cell death. Alternative splicing at the carboxyl terminus and the utilization of different promoters further categorizes these proteins as having different isoforms for each. Among such isoforms, TA and ΔN versions of each protein serve as the pro and the anti-apoptotic proteins, respectively.

View Article and Find Full Text PDF