Circ Arrhythm Electrophysiol
August 2014
Background: Both intrinsic contrast (T₁ and T₂ relaxation and the equilibrium magnetization) and contrast agent (gadolinium)-enhanced MRI are used to visualize and evaluate acute radiofrequency ablation lesions. However, current methods are imprecise in delineating lesion extent shortly after the ablation.
Methods And Results: Fifteen lesions were created in the endocardium of 13 pigs.
A novel robust and user friendly method for post-processing dynamic contrast enhanced (DCE) MRI data is presented, which provides reliable real-time delineation of the borders of thermal ablation lesions on low SNR images shortly after contrast agent injection without any model-based curve fitting. Some simple descriptors of the DCE process are calculated in a time efficient recursive manner and combined into a single image reflecting both current and previous enhancement states of each pixel, which allows robust discrimination between tissue areas with different perfusion properties. The resulting cumulative DCE (CDCE) images are shown to exhibit a strong correlation with histopathology and late gadolinium enhancement representations of the thermal damage in soft tissue.
View Article and Find Full Text PDFCatheter ablation of ventricular tachycardia (VT) is preceded by characterization of the myocardial substrate via electroanatomical voltage mapping (EAVM). The purpose of this study was to characterize the relationship between chronic myocardial fibrotic scar detected by multicontrast late enhancement (MCLE) MRI and by EAVM obtained using an MR-guided electrophysiology system, with a final aim to better understand how these measures may improve identification of potentially arrhythmogenic substrates. Real-time MR-guided EAVM was performed in six chronically infarcted animals in a 1.
View Article and Find Full Text PDFThe introduction of electroanatomic mapping (EAM) has improved the understanding of the substrate of ventricular tachycardia. EAM systems are used to delineate scar regions responsible for the arrhythmia by creating voltage or activation time maps. Previous studies have identified the benefits of creating MR-guided voltage maps; however, in some cases voltage maps may not identify regions of slow propagation that can cause the reentrant tachycardia.
View Article and Find Full Text PDFThe aim of this paper was to compare several in-vivo electrophysiological (EP) characteristics measured in a swine model of chronic infarct, with those predicted by simple 3-D MRI-based computer models built from ex-vivo scans (voxel size <1 mm(3)). Specifically, we recorded electroanatomical voltage maps (EAVM) in six animals, and ECG waves during induction of arrhythmia in two of these cases. The infarct heterogeneities (dense scar and border zone) as well as fiber directions were estimated using diffusion weighted DW-MRI.
View Article and Find Full Text PDF