Publications by authors named "Sudip Bhattacharjee"

We developed a novel strategy for synthesizing a highly acidic microporous hybrid titanium phosphate material (H-TiPOx) by incorporating 5-aminosalicylic acid (5-ASA) into the titanium phosphate framework. This new H-TiPOx serves as a Brønsted acid catalyst, exhibiting remarkable total surface acidity of 5.9 mmol g and it efficiently catalyzes the acetalization of abundant biomass derived glycerol to solketal with over 99% selectivity.

View Article and Find Full Text PDF

Conjugated microporous polymers (CMPs) are an important class of organic materials with several useful features like, inherent nanoscale porosity, large specific surface area and semiconducting properties, which are very demanding for various sustainable applications. Carbazole building blocks are extensively used in designing photocatalysts due to easy electron donation and hole transportation. In the current study, a new CMP material CBZ-CMP containing carbazole unit used for photocatalytic C═N coupling reaction under blue light irradiation is designed.

View Article and Find Full Text PDF

In this study, three different solvent systems have been employed to investigate the effect of reaction parameters on the synthesis of four alkaline earth metal-based MOFs namely [Ca(0.5 1,4-phenyl diacetic acid)(HO)DMF] (Ca-MOF-1), [Ca(1,4-naphthalene dicarboxylate)DMF] (Ca-MOF-2), [Ca(0.5 1,2,4,5-benzene tetracarboxylate)(HO)DMF] (Ca-MOF-3) and [Ca(2,6-naphthalene dicarboxylate)(HO)6] (Ca-MOF-4).

View Article and Find Full Text PDF

The eminence of transitioning from traditional fossil fuel-based energy resources to renewable and sustainable energy sources is most evidently crucial. The potential of hydrogen as an alternative energy source has specifically focuses the electrocatalytic water splitting (EWS) as a promising technique for generating hydrogen. Development of efficient electrocatalysts to facilitate the EWS process while rationalizing the limitations of noble metal catalysts like platinum has become one of the daunting tasks.

View Article and Find Full Text PDF

We report a (nickel metal-organic framework), , synthesized by using two linkers 5-sulfoisophthalic acid (SIP) and 4,4'-bipyridine (BPY) simultaneously. It displays an orthorhombic crystal system with the 2 space group: = 31.425 Å, = 19.

View Article and Find Full Text PDF

This review contains up-to-date knowledge and recent advancements on the essentiality, sources, and toxicological profile of nickel and its different compounds. Nickel is a recognized essential element for several important biological processes like the healthy growth of plants, animals, and soil/water microbes; though an excess amount of nickel intoxicates flora and fauna. Nickel is found to affect the photosynthetic function of higher plants; it can severely degrade soil fertility and causes many chronic diseases in humans.

View Article and Find Full Text PDF

The introduction of organic functionalities into porous inorganic materials not only makes the resulting hybrid porous framework to be more flexible and hydrophobic, but also provides additional scope for anchoring metal binding sites, which is beneficial for different frontline applications. Furthermore, the nanoscale porosity and high surface area of these organic-inorganic hybrid materials offer a better dispersion of active sites, which greatly enhances their application potential in adsorption, sensing, drug-delivery, energy storage, optoelectronics, light harvesting and catalysis. Easy post-synthetic functionalization of these hybrid materials has widened their application potential.

View Article and Find Full Text PDF

Ecofriendly routes for the synthesis of carbamates and carbonylative coupling products such as benzyl formate derivatives are very demanding for both academia and industries. Foreseeing a sustainable green future, we systematically analyzed the synthesis history of both these chemicals, mentioning their pros and cons. As a step towards green chemistry, here we have optimized the reaction conditions for the synthesis of various benzyl formates from corresponding benzyl halides and carbamates from substituted anilines and alkyl halides catalyzed by Ni(0) nanoparticles (NPs) immobilized over amine-functionalized ordered mesoporous SBA-15 material in the presence of CO as C1 source.

View Article and Find Full Text PDF