Publications by authors named "Sudin Ganguly"

The present work explores the potential for observing multiple reentrant localization behavior in a double-stranded helical (DSH) system, extending beyond the conventional nearest-neighbor hopping (NNH) interaction. The DSH system is considered to have hopping dimerization in each strand, while also being subjected to a transverse electric field. The inclusion of an electric field serves the dual purpose of inducing quasi-periodic disorder and strand-wise staggered site energies.

View Article and Find Full Text PDF

This work explores the potential for achieving correlated disorder in electrical circuits by utilizing reactive elements. By establishing a direct correspondence between the tight-binding Hamiltonian and the admittance matrix of the circuit, a novel approach is presented. The localization phenomena within the circuit are investigated through the analysis of the two-port impedance.

View Article and Find Full Text PDF

We report for the first time the phenomenon of flux-driven circular current in an isolated Su-Schrieffer-Heeger (SSH) quantum ring in presence of cosine modulation in the form of the Aubry-André-Harper (AAH) model. The quantum ring is described within a tight-binding framework, where the effect of magnetic flux is incorporated through Peierls substitution. Depending on the arrangements of AAH site potentials we have two different kinds of ring systems that are referred to as staggered and non-staggered AAH SSH rings.

View Article and Find Full Text PDF

The present work addresses the distinction between the topological properties ofPTsymmetric and non-PTsymmetric scenarios for the non-Hermitian Su-Schrieffer-Heeger model. The non-PTsymmetric case is represented by non-reciprocity in both the inter- and the intra-cell hopping amplitudes, while the one withPTsymmetry is modeled by a complex on-site staggered potential. In particular, we study the loci of the exceptional points, the winding numbers, band structures, and explore the breakdown of bulk-boundary correspondence (BBC).

View Article and Find Full Text PDF

We examine the current-voltage () characteristics of different polyacenes, such as anthracene, tetracene, pentacene, , under the influence of arbitrarily polarized light. The irradiation effect produces an anisotropy in the system and acenes may therefore be employed as molecular rectifiers. We find that the rectification efficiency can be more than 90% with a specific set of light parameters.

View Article and Find Full Text PDF

The present work discusses a non-synthetic strategy to achieve a favorable thermoelectric response in pentacene strain. It is found that a uni-axial strain is capable of inducing spatial anisotropy in the molecule. As a result, the transmission spectrum becomes highly asymmetric under a particular strained scenario, which is the primary requirement to get a favorable thermoelectric response.

View Article and Find Full Text PDF

Non-collinear magnetic texture breaks the spin-sublattice symmetry which gives rise to a spin-splitting effect. Inspired by this, we study the spin-dependent transport properties in a non-collinear antiferromagnetic fractal structure, namely, the Sierpinski Gasket (SPG) triangle. We find that though the spin-up and spin-down currents are different, the degree of spin polarization is too weak.

View Article and Find Full Text PDF

We discuss the possibility of getting rectification operation in graphene nanoribbon (GNR). For a system to be a rectifier, it must be physically asymmetric and we induce the asymmetry in GNR by introducing nanopores. The rectification properties are discussed for differently structured nanopores.

View Article and Find Full Text PDF

An essential attribute of many fractal structures is self-similarity. A Sierpinski gasket (SPG) triangle is a promising example of a fractal lattice that exhibits localized energy eigenstates. In the present work, for the first time we establish that a mixture of both extended and localized energy eigenstates can be generated yeilding mobility edges at multiple energies in presence of a time-periodic driving field.

View Article and Find Full Text PDF

The present work discusses the possibility to achieve a high degree of spin polarization in a three-terminal quantum system. Irradiating the system, subjected to Rashba spin-orbit (SO) interaction, we find high degree of spin polarization under a suitable input condition along with different magnitudes and phases at the two output leads. The system is described within a tight-binding (TB) framework and the effect of irradiation is incorporated following the Floquet-Bloch (FB) ansatz.

View Article and Find Full Text PDF

We propose a new route of getting controlled electron transmission through a molecular wire having a single loop geometry, by irradiating the loop with an arbitrarily polarized light. Along with conventional junction current, a new current called bias driven circular current can be established in the loop under certain conditions depending on the junction configuration. This current, on the other hand, induces a strong magnetic field that can even reach to few tesla.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbsb4has2iv85pk0uj07maiebnb6s28aq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once