Publications by authors named "Sudhir Trivedi"

Article Synopsis
  • Spectroscopy and hyperspectral imaging are essential for identifying materials, often utilizing a polarization interferometer design with birefringent wedges, such as a Babinet-Soleil compensator.
  • This interferometer typically has a lateral separation between the ordinary (no) and extraordinary (ne) optical beams, which can weaken interferogram intensity and introduce problematic spatial phase variations for hyperspectral imaging.
  • The proposed Wisconsin interferometer design uses a three-wedge configuration to ensure collinear beams, enhancing signal strength and eliminating phase shifts, making it suitable for various applications, including analytical and remote sensing spectroscopy.
View Article and Find Full Text PDF

Vibration-rotation signatures of intact water and complex organic molecules in vapor phase were detected, identified, and mode-assigned in the long-wave infrared emissions of laser-induced plasma. Time resolved long-wave infrared emissions were also studied to assess the temporal behaviors of these gaseous molecular emitters. The temperatures of these molecular vapors in the hot and transient vapor-plasma plume of the laser-induced plasma were estimated to be well above room temperatures during their existence.

View Article and Find Full Text PDF

Long-wave infrared (LWIR) emissions of laser-induced plasma on solid potassium chloride and acetaminophen tablet surfaces were studied using both a one-dimensional (1-D) linear array detection system and, for the first time, a two-dimensional (2-D) focal plane array (FPA) detection system. Both atomic and molecular infrared emitters in the vicinity of the plasma were identified by analyzing the detected spectral signatures in the infrared region. Time- and space-resolved long-wave infrared emissions were also studied to assess the temporal and spatial behaviors of atomic and molecular emitters in the plasma.

View Article and Find Full Text PDF

The multi-bounce laser microphone utilizes optical methods to detect the displacement of a gold-covered thin film diaphragm caused by ultrasound signal pressure waves. This sensitive all-optical sensing technique provides new opportunities for advanced ultrasound imaging as it is expected to achieve a higher detection signal-to-noise ratio (SNR) in a broader spectrum, as compared to conventional ultrasonic transducers. The technique does not involve signal time-averaging and the real-time enhancement in detection SNR stems from the amplification of signal strength due to multiple bouncing off the diaphragm.

View Article and Find Full Text PDF

The standoff detection range of the simultaneous ultraviolet/visible/near-infrared (UVN) + longwave-Infrared (LWIR) Laser Induced Breakdown Spectroscopy (LIBS) detection system has been successfully extended from merely 10 cm to ≥ 1 meter by adopting a reflecting telescope collection scheme and UVN + LWIR LIBS emission signatures were acquired in various atmospheres from soil and mineral samples. This system simultaneously captured emission signatures from atomic, and simple and complex molecular target species existing in or near the same laser-induce plasma plume within micro-seconds. These pioneer standoff measurements of UVN + LWIR LIBS signatures have revealed an abundance of plasma-generated sample molecular emitting species in their vapor state along with atomic ones which gave intense and distinct signature emissions in both UVN (conventional LIBS) and LWIR (LWIR LIBS) spectral regions.

View Article and Find Full Text PDF

This is the first report of a simultaneous ultraviolet/visible/NIR and longwave infrared laser-induced breakdown spectroscopy (UVN + LWIR LIBS) measurement. In our attempt to study the feasibility of combining the newly developed rapid LWIR LIBS linear array detection system to existing rapid analytical techniques for a wide range of chemical analysis applications, two different solid pharmaceutical tablets, Tylenol arthritis pain and Bufferin, were studied using both a recently designed simultaneous UVN + LWIR LIBS detection system and a fast AOTF NIR (1200 to 2200 nm) spectrometer. Every simultaneous UVN + LWIR LIBS emission spectrum in this work was initiated by one single laser pulse-induced micro-plasma in the ambient air atmosphere.

View Article and Find Full Text PDF

In this work, comparative long-wave infrared (LWIR) laser-induced breakdown spectroscopy (LIBS) emission studies of two excitation sources: conventional 1.064 μm and eye-safe laser wavelength at 1.574 μm were performed to analyze several widely-used inorganic energetic materials such as ammonium and potassium compounds as well as the organic liquid chemical warfare agent simulant, dimethyl methylphosphate (DMMP).

View Article and Find Full Text PDF

Thin solid films made of high nitro (NO)/nitrate (NO) content explosives were deposited on sand-blasted aluminum substrates and then studied using a mercury-cadmium-telluride (MCT) linear array detection system that is capable of rapidly capturing a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR; ∼5.6-10 µm). Despite the similarities of their chemical compositions and structures, thin films of three commonly used explosives (RDX, HMX, and PETN) studied in this work can be rapidly identified in the ambient air by their molecular LIBS emission signatures in the LWIR region.

View Article and Find Full Text PDF

A mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5 s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared region (LWIR, ∼5.6-10 μm) was recently developed. Similar to the conventional ultraviolet-visible LIBS, a broadband emission spectrum of condensed phase samples covering a 5.

View Article and Find Full Text PDF

In this work, we develop a mercury-cadmium-telluride linear array detection system that is capable of rapidly capturing (∼1-5  s) a broad spectrum of atomic and molecular laser-induced breakdown spectroscopy (LIBS) emissions in the long-wave infrared (LWIR) region (∼5.6-10  μm). Similar to the conventional UV-Vis LIBS, a broadband emission spectrum of condensed phase samples covering the whole 5.

View Article and Find Full Text PDF

In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra.

View Article and Find Full Text PDF

Standoff detections of explosives using quantum cascade lasers (QCLs) and the photoacoustic (PA) technique were studied. In our experiment, a mid-infrared QCL with emission wavelength near 7.35 μm was used as a laser source.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) has shown great promise for applications in chemical, biological, and explosives sensing and has significant potential for real-time standoff detection and analysis. In this study, LIBS emissions were obtained in the mid-infrared (MIR) and long-wave infrared (LWIR) spectral regions for potential applications in explosive material sensing. The IR spectroscopy region revealed vibrational and rotational signatures of functional groups in molecules and fragments thereof.

View Article and Find Full Text PDF

The induced grating autocorrelation technique, a technique based on temporally resolved two-beam coupling in a photorefractive crystal, was used to measure the nonlinear coefficient γ of three photonic crystal fibers (PCFs): a 30-cm long highly nonlinear PCF, and two large mode area PCFs of 4.5-m and 4.9-m lengths.

View Article and Find Full Text PDF

Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical technique for detecting and identifying trace elemental contaminants by monitoring the visible atomic emission from small plasmas. However, mid-infrared (MIR), generally referring to the wavelength range between 2.5 to 25 microm, molecular vibrational and rotational emissions generated by a sample during a LIBS event has not been reported.

View Article and Find Full Text PDF

A 980-nm pump-induced nonlinear refractive-index (n2) change in erbium-doped (20-m) and ytterbium-doped (20-m) fibers has been measured at 1064 nm by time-delayed photorefractive beam coupling in a co-propagating and counterpropagating geometry. It was found that n2 decreases at the wavelength of the probe beam when the pump beam is present. We present a semiclassical theory based on a four-state system that accounts for the pump-induced change of n2.

View Article and Find Full Text PDF

The nonlinear refractive index n2 of silica fiber (24 m) and erbium-doped fiber (10 m) is measured to within an accuracy of 5% by use of time-delayed photorefractive beam coupling of intense 53-ps, 1.064-microm pulses that experience self-phase modulation in the fibers. The resultant induced grating autocorrelation response yields a value of n2/A(eff) and a calibration standard for the fiber.

View Article and Find Full Text PDF

A novel scheme that combines gain switching with passive Q switching of a miniature diode-pumped solid-state laser is proposed and implemented. A composite pumping pulse, consisting of a long, low-intensity pulse and a following short, high-intensity pulse, is used to reduce the timing jitter. A greater-than-tenfold reduction in timing jitter is demonstrated.

View Article and Find Full Text PDF