Previously we showed that CO2 could be used to extract organic molecules from ionic liquids without contamination of the ionic liquid. Consequently a number of other groups demonstrated that ionic liquid/CO2 biphasic systems could be used for homogeneously catalyzed reactions. Large differences in the solubility of various gases in ionic liquids present the possibility of using them for gas separations.
View Article and Find Full Text PDFRoom-temperature ionic liquids (ILs) have potential for many different applications, including catalysis and synthesis. Organics are often present during IL applications; therefore, a more fundamental understanding of the interactions between IL and organics is necessary. A systematic study of the effects of organic cosolvents, cations, and anions on the solvent strength of IL/organic mixtures will allow for a greater understanding and potential for tuning of ILs for specific purposes.
View Article and Find Full Text PDFIonic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies.
View Article and Find Full Text PDFThe presence of CO(2) increases the solubility of O(2) and CH(4) in 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide at 25 degrees C and pressures to 13 bar.
View Article and Find Full Text PDFBoth hydrophobic and hydrophilic room-temperature ionic liquids can be separated from aqueous solutions with relatively low-pressure gaseous carbon dioxide.
View Article and Find Full Text PDFA novel technique to separate ionic liquids from organic compounds is introduced which uses carbon dioxide to induce the formation of an ionic liquid-rich phase and an organic-rich liquid phase in mixtures of methanol and 3-butyl-1-methyl-imidazolium hexafluorophosphate ([C4mim][PF6]). If the temperature is above the critical temperature of CO2 then the methanol-rich phase can become completely miscible with the CO2-rich phase, and this new phase is completely ionic liquid-free. Since CO2 is nonpolar, it is not equipped to solvate ions.
View Article and Find Full Text PDFThe bimolecular rate constants of the addition reaction between hydroxyl radical (*OH) and nitrobenzene (C(6)H(5)NO(2)) were measured in subcritical and supercritical water (SCW) at temperatures between ambient and 390 degrees C. The measured bimolecular rate constants showed distinctly non-Arrhenius behavior (i.e.
View Article and Find Full Text PDF