The Morita-Baylis-Hillman (MBH) and Rauhut-Currier (RC) adducts of nitroalkenes are important synthetic intermediates in organic synthesis. This review discusses the applications of different MBH and RC adducts of nitroalkenes such as MBH alcohols, acetates, bromides and hydrazinonitroalkenes as well as ketoalkylnitroalkenes in the synthesis of complex molecules including carbocycles and heterocycles. It also covers the mechanistic aspects, including the key intermediates and the reaction pathways.
View Article and Find Full Text PDFBismacycles featuring a sulfone-bridged scaffold have recently been developed as versatile and convenient electrophilic arylating agents. Here, we report that the exocyclic aryl group, which is ultimately transferred to a nucleophilic coupling partner, can be functionalized through cross-coupling, heteroatom substitutions, oxidations and reductions, and protecting group manipulations. This "postsynthetic modification" approach provides concise and divergent access to complex aryl bismacycles.
View Article and Find Full Text PDFA facile, base- and catalyst-free synthesis of Morita-Baylis-Hillman and Rauhut-Currier adducts of β-aminonitroalkenes with different electrophiles such as ethyl glyoxylate, trifluoropyruvate, ninhydrin, vinyl sulfone, and -tosylazadiene is reported. The products are formed in good to excellent yields at room temperature with a broad substrate scope. The adducts of ninhydrin and β-aminonitroalkene spontaneously cyclize to fused indenopyrroles.
View Article and Find Full Text PDFA facile, metal-free method for the synthesis of substituted α-carbolines from secondary Morita-Baylis-Hillman (MBH) acetates of nitroalkenes is presented. The cascade reaction of MBH acetates with tosyliminoindolines occurs regioselectively to form various α-carbolines with a wide substrate scope. The reaction involves mild conditions, and the products are formed in high yields within a short reaction time.
View Article and Find Full Text PDFThe reaction of β-ketosulfones with different α-functionalized nitroalkenes affords diversely substituted sulfonylfurans and dihydrofurans. Furthermore, β-ketosulfones react with α-bromonitroalkenes and α-hydrazinonitroalkenes via a cascade Michael addition-cyclization protocol to afford nitrodihydrofurans and hydrazinodihydrofurans, respectively, bearing a key sulfonyl group, in excellent yields with a broad substrate scope. Application of these products has been demonstrated by the synthesis of pyrroles and pyrazoles in good yields.
View Article and Find Full Text PDFMorita-Baylis-Hillman acetates and α-bromonitroalkenes have been employed in cascade reactions with lawsone and 2-aminonaphthoquinone for the one-pot synthesis of heterocycle fused quinonoid compounds. The reactions reported here utilized the 1,3-binucleophilic potential of hydroxy- and aminonaphthoquinones and the 1,2/1,3-bielectrophilic potential of bromonitroalkenes and Morita-Baylis-Hillman acetates for the synthesis of pyrrole and furan fused naphthoquinones. The synthesized compounds were evaluated against HCT-116 (human colon carcinoma cells), PC3 (human prostate cancer cells), HL-60 (human promyelocytic leukemia cells), SF295 (human glioblastoma cells) and NCI-H460 (human lung cancer cells) and exhibited antitumor activity with IC values as low as < 2 μM.
View Article and Find Full Text PDF