Hepatocellular carcinoma (HCC), with its high mortality and short survival rate, continues to be one of the deadliest malignancies despite relentless efforts and several technological advances. The poor prognosis of HCC and the few available treatments are to blame for the low survival rate, which emphasizes the importance of creating new, effective diagnostic markers and innovative therapy strategies. In-depth research is being done on the potent biomarker miRNAs, a special class of non-coding RNA and has shown encouraging results in the early identification and treatment of HCC in order to find more viable and successful therapeutics for the disease.
View Article and Find Full Text PDFThe agricultural sector and environmental safety both work hand in hand to promote sustainability in important issues like soil health, plant nutrition, food safety, and security. The conventional methods have greatly harmed the environment and people's health and caused soil fertility and quality to decline as well as deteriorate. Keeping in view the excessive exploitation and cascade of degradation events due to unsustainable farming practices, the need of the hour demands choosing an appropriate, eco-friendly strategy to restore soil health, plant nutrition, and environmental aspects.
View Article and Find Full Text PDFThe high ratio of global mortality rate to incidence rate and steep increase in incidence of liver cancer warrants need for advancement of innovative cancer treatment and therapy for hepatocellular carcinoma (HCC). miRNAs are fascinating prospects as treatments in the form of miRNA mimics or therapeutic targets because of their capacity to target various mRNAs that are changed in diseased states. Micronome is a tool to find signature miRNA for any disease and there is hardly any study on micronome in HCC.
View Article and Find Full Text PDFThe pandemic respiratory disease COVID-19 has spread over the globe within a small span of time. Generally, there are two important points are being highlighted and considered towards the successful diagnosis and treatment process. The first point includes the reduction of the rate of infections and the next one is the decrease of the death rate.
View Article and Find Full Text PDFDiabetes is a major health challenge, and it is linked to a number of serious health issues, including cardiovascular disease (heart attack and stroke), diabetic nephropathy (kidney damage or failure), and birth defects. The detection of glucose has a direct and significant clinical importance in the management of diabetes. Herein, we demonstrate the application of synthesized TiC-TiO MXene nanocomposite for high throughput non-enzymatic electrochemical sensing of glucose.
View Article and Find Full Text PDFThe current method of agriculture entails the usage of excessive amounts of pesticides and fertilizers. The blatant use of conventional pesticides and fertilizers over several decades has led to their bioaccumulation with adverse effects on soil biodiversity and the development of resistance by pests. With the decline in clinically useful antibiotics and increase in multi drug resistant microbes, it is imperative to develop new and effective antimicrobial therapies.
View Article and Find Full Text PDFThe recent outbreak of COVID-19 has created much inconvenience and fear that the virus can seriously affect humans, causing health hazards and death. This pandemic has created much worry and as per the report by World Health Organization (WHO), more than 43 million individuals in 215 countries and territories were affected. People around the world are still struggling to overcome the problems associated with this pandemic.
View Article and Find Full Text PDFIn this study, composite two-dimensional (2D) materials consisting of graphene (Gr) and tungsten disulfide (WS) were coalesced with gold nanoparticles (AuNPs) through a self-assembly process to boost the conductivity of the resulting graphene-tungsten disulfide-gold nanoparticles (Gr-WS-AuNPs) nanointerface structure. Structural and morphological characterization of the nanohybrid structure reveals crystalline thin flakelike agglomerates. Electrochemical characterization reveals an excellent electron transfer process for all the modified electrodes at the interface.
View Article and Find Full Text PDFThe serotype-specific early detection of dengue fever is very effective in predicting the pervasiveness of fatal infections such as dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). This fever results from reinfection (secondary) with a serotype of the dengue virus, which is different from the serotype involved in primary infection. Hence, the present work was aimed to develop a multiplexed electrochemical paper-based analytical device (ePAD) consisting of graphene oxide-silicon dioxide (GO-SiO) nanocomposites to detect the specific type of dengue virus (DENV).
View Article and Find Full Text PDFThis report presents a novel lab-on-a-paper (LoP)-based device coupled with a molybdenum disulfide nanosheet (MoSNS)-modified electrochemical genosensor for detecting -specific DNA. Conductive electrodes were grafted on a paper-based substrate employing a stencil printing technique, and MoSNS was decorated on the working electrode. MoSNS has strong affinity toward nucleo bases, which made it a best sensing interface for the immobilization of DNA.
View Article and Find Full Text PDFIn vivo monitoring of the neurotransmitter dopamine can potentially improve the diagnosis of neurological disorders and elucidate their underlying biochemical mechanisms. While electrochemical sensors can detect unlabeled dopamine molecules, their sensing performance is dramatically reduced by electrochemical currents generated by other, interfering molecules (e.g.
View Article and Find Full Text PDFThis research work delved into the photocatalytic degradation of monoazo dye (methyl orange) and diazo dye (congo red) in aqueous solution using Fe3+/C/S-doped TiO2 nanocomposites. The nanocomposites were synthesised through sol-gel method and characterized using XRD, FTIR, SEM, TEM, EDX, BET and UV-Vis. Photocatalytic degradation of the dyes was monitored under simulated visible light using pristine TiO2, C/S/doped-TiO2 and Fe3+/C/S doped-TiO2 with varying concentrations of Fe3+.
View Article and Find Full Text PDFFunctional carbon nanotubes (CNT) have attracted much attention for analytical and biomedical applications. This paper describes the fabrication of a cholesterol oxidase (ChOx) immobilised polyaniline (PANI)/CNT composite electrode for the amperometric detection of cholesterol. The prepared ChOx/PANI/CNT/Au bioelectrode bound ChOx via the available functionalties of PANI (-NH2) and CNT (-COOH).
View Article and Find Full Text PDFEnzyme Microb Technol
November 2014
In this article we report a selective urea electrochemical biosensor based on electro-co-deposited zirconia-polypropylene imine dendrimer (ZrO2-PPI) nanocomposite modified screen printed carbon electrode (SPCE). ZrO2 nanoparticles, prepared by modified sol-gel method were dispersed in PPI solution, and electro-co-deposited by cyclic voltammetry onto a SPCE surface. The material and the modified electrodes were characterised using FTIR, electron microscopy and electrochemistry.
View Article and Find Full Text PDFThis manuscript briefly reviews the extensive research as well as new developments on chitosan based nanomaterials for various applications. Chitosan is a biocompatible and biodegradable polymer having immense structural possibilities for chemical and mechanical modification to generate novel properties and functions in different fields especially in the biomedical field. Over the last era, research in functional biomaterials such as chitosan has led to the development of new drug delivery system and superior regenerative medicine, currently one of the most quickly growing fields in the area of health science.
View Article and Find Full Text PDFA potentiometrically tuned-glucose biosensor was fabricated using core-shell nanocomposite based on zinc oxide encapsulated chitosan-graft-poly(vinyl alcohol) (ZnO/CHIT-g-PVAL). In a typical experiment, ZnO/CHIT-g-PVAL core-shell nanocomposite containing <20 nm ZnO nanoparticles was synthesized using wet-chemical method. The glucose responsive bio-electrode, i.
View Article and Find Full Text PDF