We propose a simultaneous imaging technique of both sound propagations and spatial distribution of acoustic frequencies. We experimentally demonstrated the proposed technique for the acoustic waves of frequencies 39,500 and 40,500 Hz, which have close sound pressure. The sounds were recorded at the framerate of 100,000 fps by parallel phase-shifting digital holography.
View Article and Find Full Text PDFSound is an important invisible physical phenomenon that needs to be explained in several physical and biological processes, along with visual phenomena. For this purpose, multiparameter digital holography (DH) has been proposed to visualize both features simultaneously due to the phase and amplitude reconstruction properties of DH. In this paper, we present a brief review on sound field imaging techniques with special focus on the multiparameter imaging capability of DH for visualizing sound and visual features.
View Article and Find Full Text PDFThe demand for single-shot and common-path holographic systems has become increasingly important in recent years, as such systems offer various advantages compared to their counterparts. Single-shot holographic systems, for example, reduce computational complexity as only a single hologram with the object information required to process, making them more suitable for the investigation of dynamic events; and common-path holographic systems are less vibration-sensitive, compact, inexpensive, and high in temporal phase stability. We have developed a single-shot common-path off-axis digital holographic setup based on a beam splitter and pinhole.
View Article and Find Full Text PDFSound field imaging techniques have been found very useful for acoustic designs. Building on this idea, innovative techniques are needed and presented in this paper, where we report on developed imaging of the sound field radiated from speakers by parallel phase-shifting digital holography. We adopted an ultrasonic wave radiated from a speaker for an object.
View Article and Find Full Text PDFWe propose a nonscanning three-dimensional (3-D) fluorescence imaging technique using the transport of intensity equation (TIE) and free-space Fresnel propagation. In this imaging technique, a phase distribution corresponding to defocused fluorescence images with a point-light-source-like shape is retrieved by a TIE-based phase retrieval algorithm. From the obtained phase distribution, and its corresponding amplitude distribution, of the defocused fluorescence image, various images at different distances can be reconstructed at the desired plane after Fresnel propagation of the complex wave function.
View Article and Find Full Text PDFOptical voice encryption based on digital holography (DH), which uses the double random phase encoding (DRPE) in the Fourier transform domain, has been proposed [Opt. Lett.42, 4619 (2017)OPLEDP0146-959210.
View Article and Find Full Text PDFIn this Letter, a concept of new multi-parameter imaging that can acquire visual and audio data of dynamic object phenomena simultaneously by a holographic technique is proposed. Temporal intensity distributions give us visual information of the dynamic events. The temporal profile of the phase distribution can give different information of the dynamic events, such as audio data.
View Article and Find Full Text PDFWater-related diseases affect societies in all parts of the world. Online sensors are considered a solution to the problems associated with laboratory testing in potable water. One of the most active research areas of such online sensors has been within optics.
View Article and Find Full Text PDFWe propose an optical voice encryption scheme based on digital holography (DH). An off-axis DH is employed to acquire voice information by obtaining phase retardation occurring in the object wave due to sound wave propagation. The acquired hologram, including voice information, is encrypted using optical image encryption.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
June 2014
We propose a novel optical information encryption and authentication scheme that uses asymmetric keys generated by the phase-truncation approach and the phase-retrieval algorithm. Multiple images bonded with random phase masks are Fourier transformed, and obtained spectra are amplitude- and phase-truncated. The phase-truncated spectra are encoded into a single random intensity image using the phase-retrieval algorithm.
View Article and Find Full Text PDFWe propose a novel nonlinear image-encryption scheme based on a Gerchberg-Saxton (G-S) phase-retrieval algorithm in the Fresnel transform domain. The decryption process can be performed using conventional double random phase encoding (DRPE) architecture. The encryption is realized by applying G-S phase-retrieval algorithm twice, which generates two asymmetric keys from intermediate phases.
View Article and Find Full Text PDFIn this paper, an image encryption scheme based on polarized light encoding and a phase-truncation approach in the Fresnel transform domain is proposed. The phase-truncated data obtained by an asymmetric cryptosystem is encrypted and decrypted by using the concept of the Stokes-Mueller formalism. Image encryption based on polarization of light using Stokes-Mueller formalism has the main advantage over Jones vector formalism that it manipulates only intensity information, which is measurable.
View Article and Find Full Text PDFIn this paper, we propose a scheme for information security under the basic double random phase encoding framework but with enhanced complexity and immunity against the known-plaintext attack. Modified Gerchberg-Saxton algorithm is used to convert a primary image into a phase-only mask (POM). The POM is used as a Fresnel domain key for encrypting an arbitrary data, called random intensity mask (RIM) bonded with a random phase mask.
View Article and Find Full Text PDFA single channel asymmetric color image encryption scheme is proposed that uses an amplitude- and phase- truncation approach with interference of polarized wavefronts. Instead of commonly used random phase masks, wavelength-dependent structured phase masks (SPM) are used in the fractional Fourier transform domain for image encoding. The primary color components bonded with different SPMs are combined into one grayscale image using convolution.
View Article and Find Full Text PDFWe propose an image encryption technique based on the interference principle and phase-truncation approach in the fractional Fourier domain. The proposed scheme offers multiple levels of security with asymmetric keys and is free from the silhouette problem. Multiple input images bonded with random phase masks are independently fractional Fourier transformed.
View Article and Find Full Text PDF