A metagenomic approach was applied using 454-pyrosequencing data analysis for the profiling of bacterial communities in the brine samples of the water reclamation plant. Some physicochemical characteristics of brine samples were also determined using standard methods. Samples ranged from being lightly alkaline to highly alkaline (pH 7.
View Article and Find Full Text PDFPenicillin G acylase (PGA) is a commercially important enzyme that cleaves penicillin G to 6-amino penicillanic acid (6-APA) and phenyl acetic acid (PAA). The strain Bacillus badius has been identified as potential producer of PGA. A detailed calorimetric investigation on PGA production was carried out to enable generation of thermokinetic data possible for commercial application.
View Article and Find Full Text PDFThe metabolic effectiveness of choline lactate in the growth media was investigated relative to conventional carbon source for growing Staphylococcus lentus, a bacterial strain commonly used in bioremediation of industrial effluents and xenobiotic detoxification. Bacterial growth thermodynamics was determined by biocalorimetry. (13)C NMR and FTIR spectroscopic analyses traced the consumption of choline lactate at specific time intervals of bacterial growth.
View Article and Find Full Text PDFBioreaction calorimetric studies of degradation of the dye acid blue 113 by Staphylococcus lentus are reported for the first time. The heat released during the dye degradation process can be successfully measured using reaction calorimeter. Power time and oxygen uptake rate (OUR) profile followed each other suggesting that heat profiles could monitor the progress of the dye degradation in biocalorimetry.
View Article and Find Full Text PDFCholine-based biocompatible salts were used as "nutrients" for the growth of Staphylococcus lentus bacteria. Increase in the growth rate of bacteria was observed, compared to conventional carbon sources. In the case of the ionic liquid, choline lactate, the increase was pronounced.
View Article and Find Full Text PDFIndustrial wastewaters such as tannery and textile processing effluents are often characterized by a high content of dissolved organic dyes, resulting in large values of chemical and biological oxygen demand (COD and BOD) in the aquatic systems into which they are discharged. Such wastewater streams are of rapidly growing concern as a major environmental issue in developing countries. Hence there is a need to mitigate this challenge by effective approaches to degrade dye-contaminated wastewater.
View Article and Find Full Text PDFBackground: High salinity (1-10% w/v) of tannery wastewater makes it difficult to be treated by conventional biological treatment. Salt tolerant microbes can adapt to these saline conditions and degrade the organics in saline wastewater.
Results: Four salt tolerant bacterial strains isolated from marine and tannery saline wastewater samples were identified as Pseudomonas aeruginosa, Bacillus flexus, Exiguobacterium homiense and Staphylococcus aureus.