Aporphine alkaloids have shown affinity for serotonin receptors (5-HTRs), and there has been a recent upsurge of interest in aporphines as 5-HTR ligands. 1,2,9,10-Tetraoxygenated aporphine alkaloids in particular have demonstrated good affinity for 5-HTRs. In continued efforts to understand the impacts of structural modification of the 1,2,9,10-tetraoxygenated aporphine template on affinity, selectivity, and activity at 5-HTR subtypes, we used (+)-boldine () as a semisynthetic feedstock in the preparation of C-2-alkoxylated (+)-predicentrine analogues.
View Article and Find Full Text PDFMutations in MEK1/2 have been described as a resistance mechanism to BRAF/MEK inhibitor treatment. We report the discovery of a novel ATP-competitive MEK1/2 inhibitor with efficacy in wildtype (WT) and mutant MEK12 models. Starting from a HTS hit, we obtained selective, cellularly active compounds that showed equipotent inhibition of WT MEK1/2 and a panel of MEK1/2 mutant cell lines.
View Article and Find Full Text PDFTetrahydroprotoberberine alkaloids have shown interesting polypharmacological actions at dopamine receptors and are a unique template from which to mine novel molecules with dual selective actions at D1 and D3 receptors. Such compounds will be valuable to evaluate as anti-cocaine therapeutics. Towards that eventual goal, we engaged an SAR study in which a series of C9 alkoxy analogues of the D1/D2/D3 ligand (-)-stepholidine that possessed or lacked a C12 bromo functionality, were synthesized and evaluated for affinity at dopamine D1, D2 and D3 receptors.
View Article and Find Full Text PDFTwo series of analogues of the tetrahydroprotoberberine (THPB) alkaloid (±)-stepholidine that (a) contain various alkoxy substituents at the C10 position and, (b) were de-rigidified with respect to (±)-stepholidine, were synthesized and evaluated for affinity at dopamine and σ receptors in order to evaluate effects on D3 and σ2 receptor affinity and selectivity. Small n-alkoxy groups are best tolerated by D3 and σ2 receptors. Among all compounds tested, C10 methoxy and ethoxy analogues (10 and 11 respectively) displayed the highest affinity for σ2 receptors as well as σ2 versus σ1 selectivity and also showed the highest D3 receptor affinity.
View Article and Find Full Text PDFA series of C1 aporphine analogs related to compound 5 and that contain substituted allylic, alkynyl, nitrile, ester and benzyl groups was synthesized and evaluated for affinity at h5HT2A and α1A receptors in functional activity assays that measure calcium release. The presence of branched allylic substituent groups diminished affinity for the h5HT2A receptor. Likewise, the alkynyl, nitrile and ester derivatives evaluated displayed lower 5-HT2A receptor affinity as compared to 5.
View Article and Find Full Text PDFN-Methyllaurotetanine (1) has been reported to display good affinity for the 5-HT1A receptor, but no structure-affinity studies have been performed to date. The commercially available alkaloid boldine (2) was used as the starting material for synthesis of various C-9 alkoxy analogues of N-methyllaurotetanine in order to gauge the effect of C-9 alkylation on affinity and selectivity at 5-HT1A, 5-HT2A, and 5-HT7 receptors. Mitsunobu reactions were implemented in the alkylation steps leading to the analogues.
View Article and Find Full Text PDF