ACS Appl Mater Interfaces
November 2024
Bifacial perovskite solar cells (Bi-PSCs) have attracted substantial attention within the photovoltaic (PV) community due to their potential for enhanced power generation, suitability for integration into building structures and applicability in multijunction PV systems. This study presents the fabrication of efficient Bi-PSCs and investigates their unique properties using various characterization techniques, including Lambertian reflection effects through tilt angle arrangements and bottom albedo illuminations. The control device achieved a maximum power conversion efficiency (PCE) of 17.
View Article and Find Full Text PDFEncapsulants based on ethylene-vinyl acetate copolymers (EVA) or polyolefin elastomers (POE) are essential for glass or photovoltaic module laminates. To improve their multi-functional property profile and their durability, the encapsulants are frequently peroxide crosslinked. The crosslinking kinetics are affected by the macromolecular structure and the formulation with stabilizers such as phenolic antioxidants, hindered amine light stabilizers or aromatic ultraviolet (UV) absorbers.
View Article and Find Full Text PDFThe integration of dye-sensitized solar cells (DSSCs) with building roof panels, windows, and various decorative outdoor installations is presently an important research topic for their immediate commercialization potential because of their power generation capability, sustainability, and aesthetic appearance. For industrial applications, Pt counter electrodes (CEs) need to be replaced with Pt-free CEs because of their limited sources and cost. An ideal CE should be economical, abundant, and have excellent electrochemical stability and activity, with easy processing in bulk.
View Article and Find Full Text PDFIn this study, we present the preparation of graphene quantum dots (GQDs) and graphene oxide quantum dots (GOQDs). GQDs/GOQDs are prepared by an easy electrochemical exfoliation method, in which two graphite rods are used as electrodes. The electrolyte used is a combination of citric acid and alkali hydroxide in water.
View Article and Find Full Text PDFGraphene nanoplatelets (GNPs) are prepared from natural graphite by a simple and low-cost liquid phase high shear exfoliation method. The as-prepared GNPs are used as a counter electrode (CE) material for dye-sensitized solar cells (DSSCs). To confirm the Exfoliated GNPs, structural and morphological studies are carried out using X-ray diffraction (XRD), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and selected area electron diffraction (SAED) studies.
View Article and Find Full Text PDFContact layers play an important role in thin film solar cells, but new material development and optimization of its thickness is usually a long and tedious process. A high-throughput experimental approach has been used to accelerate the rate of research in photovoltaic (PV) light absorbers and transparent conductive electrodes, however the combinatorial research on contact layers is less common. Here, we report on the chemical bath deposition (CBD) of CdS thin films by combinatorial dip coating technique and apply these contact layers to Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) light absorbers in PV devices.
View Article and Find Full Text PDFAbstract: The paper reports the fabrication of Zn-doped TiO nanotubes (Zn-TONT)/ZnO nanoflakes heterostructure for the first time, which shows improved performance as a photoanode in dye-sensitized solar cell (DSSC). The layered structure of this novel nanoporous structure has been analyzed unambiguously by Rutherford backscattering spectroscopy, scanning electron microscopy, and X-ray diffractometer. The cell using the heterostructure as photoanode manifests an enhancement of about an order in the magnitude of the short circuit current and a seven-fold increase in efficiency, over pure TiO photoanodes.
View Article and Find Full Text PDFSingle crystal like TiO(2) nanotubes with preferential orientation along the [001] direction, parallel to the growth direction of nanotubes, that offer ease of charge transport much higher than reported so far, are fabricated using a cost effective two step technique. The success of this method to grow the nanotubes with the anomalous intense [001] preferential orientation is attributed to the zinc assisted minimization of the (001) surface energy. The single crystal like TiO(2) nanotubes show superior performance as supercapacitor electrodes compared to the normal polycrystalline titanium dioxide nanotubes.
View Article and Find Full Text PDFDye sensitized solar cells (DSSCs) have attracted much attention in recent years due to low cost fabrication as compared to silicon-based and thin film solar cells. Though, platinum is an excellent catalytic material for use in preparation of counter electrodes (CEs) for DSSCs it is expensive. Alternatives to replacement of platinum (Pt) that have been examined are carbon materials, conductive polymers and hybrids.
View Article and Find Full Text PDF