Although the mechanism of accumulation of C8-C16 saturated fatty acids in seed oils has been well-studied, the control of stearic (C18:0) acid deposition in high stearate seed fat is still unclear. We investigated the mechanism that regulates high level of stearate and oleate (C18:1) accumulation in mango (Mangifera indica) seeds during its development, and examined the seed plastid extracts for induction of any specialized fatty acyl-ACP thioesterase (Fat) that may control this high level of deposition. Though the specificity of the Fat enzymes does not account directly for the fatty acid composition of mango seeds, our result suggested that an induced synthesis of a FatA type of thioesterase could be responsible for the high content of oleate and stearate in its seed fat.
View Article and Find Full Text PDFDeposition of oleate, stearate and palmitate at the later stages of seed development in Mahua (Madhuca longifolia (latifolia)), a tropical non-conventional oil seed plant, has been found to be the characteristic feature of the regulatory mechanism that produces the saturated fatty acid rich Mahua seed fat (commonly known as Mowrah fat). Although, the content of palmitate has been observed to be higher than that of stearate at the initial stages of seed development, it goes down when the stearate and oleate contents consistently rise till maturity. The present study was undertaken in order to identify the kind of acyl-ACP thioesterase(s) that drives the characteristic composition of signature fatty acids (oleate 37%, palmitate 25%, stearate 23%, linoleate 12.
View Article and Find Full Text PDF