Publications by authors named "Sudhaman Parthasarathy"

The efficiency of machine learning (ML) algorithms plays a critical role in their deployment across various applications, particularly those with resource constraints or real-time requirements. This article presents a comprehensive framework for evaluating ML algorithm efficiency by incorporating metrics, such as training time, prediction time, memory usage, and computational resource utilization. The proposed methodology involves a multistep process: collecting raw metrics, normalizing them, applying the Analytic Hierarchy Process (AHP) to determine weights, and computing a composite efficiency score.

View Article and Find Full Text PDF

Artificial intelligence (AI) and machine learning (ML) aim to mimic human intelligence and enhance decision making processes across various fields. A key performance determinant in a ML model is the ratio between the training and testing dataset. This research investigates the impact of varying train-test split ratios on machine learning model performance and generalization capabilities using the BraTS 2013 dataset.

View Article and Find Full Text PDF

Due to advancements in technology such as data science and artificial intelligence, healthcare research has gained momentum and is generating new findings and predictions on abnormalities leading to the diagnosis of diseases or disorders in human beings. On one hand, the extensive application of data science to healthcare research is progressing faster, while on the other hand, the ethical concerns and adjoining risks and legal hurdles those data scientists may face in the future slow down the progression of healthcare research. Simply put, the application of data science to ethically guided healthcare research appears to be a dream come true.

View Article and Find Full Text PDF