Transcriptional variability facilitates stochastic cell diversification and can in turn underpin adaptation to stress or injury. We hypothesize that it may analogously facilitate progression of premalignancy to cancer. To investigate this, we initiated preleukemia in mouse cells with enhanced transcriptional variability due to conditional disruption of the histone lysine acetyltransferase gene .
View Article and Find Full Text PDFSchizophrenia (SCZ) and bipolar disorder are debilitating neuropsychiatric disorders arising from a combination of environmental and genetic factors. Novel open reading frames (nORFs) are genomic loci that give rise to previously uncharacterized transcripts and protein products. In our previous work, we have shown that nORFs can be biologically regulated and that they may play a role in cancer and rare diseases.
View Article and Find Full Text PDFBackground: Plasmodium falciparum causes the deadliest form of malaria, which remains one of the most prevalent infectious diseases. Unfortunately, the only licensed vaccine showed limited protection and resistance to anti-malarial drug is increasing, which can be largely attributed to the biological complexity of the parasite's life cycle. The progression from one developmental stage to another in P.
View Article and Find Full Text PDFUncharacterized and unannotated open-reading frames, which we refer to as novel open reading frames (nORFs), may sometimes encode peptides that remain unexplored for novel therapeutic opportunities. To our knowledge, no systematic identification and characterization of transcripts encoding nORFs or their translation products in cancer, or in any other physiological process has been performed. We use our curated nORFs database (nORFs.
View Article and Find Full Text PDFRecent evidence from proteomics and deep massively parallel sequencing studies have revealed that eukaryotic genomes contain substantial numbers of as-yet-uncharacterized open reading frames (ORFs). We define these uncharacterized ORFs as novel ORFs (nORFs). nORFs in humans are mostly under 100 codons and are found in diverse regions of the genome, including in long noncoding RNAs, pseudogenes, 3' UTRs, 5' UTRs, and alternative reading frames of canonical protein coding exons.
View Article and Find Full Text PDFNovel open reading frames (nORFs) with coding potential may arise from noncoding DNA. Not much is known about their emergence, functional role, fixation in a population or contribution to adaptive radiation. Cichlids fishes exhibit extensive phenotypic diversification and speciation.
View Article and Find Full Text PDFPhosphorylation sites often have key regulatory functions and are central to many cellular signaling pathways, so mutations that modify them have the potential to contribute to pathological states such as cancer. Although many classifiers exist for prioritization of coding genomic variants, to our knowledge none of them explicitly account for the alteration or creation of kinase recognition motifs that alter protein structure, function, regulation of activity, and interaction networks through modifying the pattern of phosphorylation. We present a novel computational pipeline that uses a random forest classifier to predict the pathogenicity of a variant, according to its direct or indirect effect on local phosphorylation sites and the predicted functional impact of perturbing a phosphorylation event.
View Article and Find Full Text PDFBig Data will be an integral part of the next generation of technological developments-allowing us to gain new insights from the vast quantities of data being produced by modern life. There is significant potential for the application of Big Data to healthcare, but there are still some impediments to overcome, such as fragmentation, high costs, and questions around data ownership. Envisioning a future role for Big Data within the digital healthcare context means balancing the benefits of improving patient outcomes with the potential pitfalls of increasing physician burnout due to poor implementation leading to added complexity.
View Article and Find Full Text PDFAcute Myeloid Leukemia (AML) is an aggressive hematological malignancy with abnormal progenitor self-renewal and defective white blood cell differentiation. Its pathogenesis comprises subversion of transcriptional regulation, through mutation and by hijacking normal chromatin regulation. Kat2a is a histone acetyltransferase central to promoter activity, that we recently associated with stability of pluripotency networks, and identified as a genetic vulnerability in AML.
View Article and Find Full Text PDFComplex behavior is associated with animals with nervous systems, but decision-making and learning also occur in non-neural organisms [1], including singly nucleated cells [2-5] and multi-nucleate synctia [6-8]. Ciliates are single-cell eukaryotes, widely dispersed in aquatic habitats [9], with an extensive behavioral repertoire [10-13]. In 1906, Herbert Spencer Jennings [14, 15] described in the sessile ciliate Stentor roeseli a hierarchy of responses to repeated stimulation, which are among the most complex behaviors reported for a singly nucleated cell [16, 17].
View Article and Find Full Text PDFThere is still a significant gap between our understanding of neural circuits and the behaviours they compute-i.e. the computations performed by these neural networks (Carandini 2012 , 507-509.
View Article and Find Full Text PDFThe giant, single-celled organism Stentor coeruleus has a long history as a model system for studying pattern formation and regeneration in single cells. Stentor [1, 2] is a heterotrichous ciliate distantly related to familiar ciliate models, such as Tetrahymena or Paramecium. The primary distinguishing feature of Stentor is its incredible size: a single cell is 1 mm long.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy can be used as an analytical tool to investigate posttranslational modifications of protein. NMR is a valuable tool to map the interaction regions of protein partners. Here, we present protocols that have been developed in the course of our studies of the neuronal Tau protein.
View Article and Find Full Text PDFTau neuronal protein has a central role in neurodegeneration and is implicated in Alzheimer disease development. Abnormal phosphorylation of Tau impairs its interaction with other proteins and is associated with its dysregulation in pathological conditions. Molecular mechanisms leading to hyperphosphorylation of Tau in pathological conditions are unknown.
View Article and Find Full Text PDFOnly a small fraction of the mammalian genome codes for messenger RNAs destined to be translated into proteins, and it is generally assumed that a large portion of transcribed sequences--including introns and several classes of noncoding RNAs (ncRNAs)--do not give rise to peptide products. A systematic examination of translation and physiological regulation of ncRNAs has not been conducted. Here we use computational methods to identify the products of non-canonical translation in mouse neurons by analysing unannotated transcripts in combination with proteomic data.
View Article and Find Full Text PDFMathematical models are extensively employed to understand physicochemical processes in biological systems. In the absence of detailed mechanistic knowledge, models are often based on network inference methods, which in turn rely upon perturbations to nodes by biochemical means. We have discovered a potential pitfall of the approach underpinning such methods when applied to signaling networks.
View Article and Find Full Text PDFWiley Interdiscip Rev Syst Biol Med
February 2013
We discuss protein post-translational modification (PTM) from an information processing perspective. PTM at multiple sites on a protein creates a combinatorial explosion in the number of potential 'mod-forms', or global patterns of modification. Distinct mod-forms can elicit distinct downstream responses, so that the overall response depends partly on the effectiveness of a particular mod-form to elicit a response and partly on the stoichiometry of that mod-form in the molecular population.
View Article and Find Full Text PDFThe functional impact of multisite protein phosphorylation can depend on both the numbers and the positions of phosphorylated sites-the global pattern of phosphorylation or 'phospho-form'-giving biological systems profound capabilities for dynamic information processing. A central problem in quantitative systems biology, therefore, is to measure the 'phospho-form distribution': the relative amount of each of the 2(n) phospho-forms of a protein with n-phosphorylation sites. We compared four potential methods-western blots with phospho-specific antibodies, peptide-based liquid chromatography (LC) and mass spectrometry (MS; pepMS), protein-based LC/MS (proMS) and nuclear magnetic resonance spectroscopy (NMR)-on differentially phosphorylated samples of the well-studied mitogen-activated protein kinase Erk2, with two phosphorylation sites.
View Article and Find Full Text PDFA mass spectrometry based high throughput approach was employed to profile white and gray matter lipid levels in the prefrontal cortex (Brodmann area 9) of 45 subjects including 15 schizophrenia and 15 bipolar disorder patients as well as 15 controls samples. We found statistically significant alterations in levels of free fatty acids and phosphatidylcholine in gray and white matter of both schizophrenia and bipolar disorder samples compared to controls. Also, ceramides were identified to be significantly increased in white matter of both neuropsychiatric disorders as compared to control levels.
View Article and Find Full Text PDFThe molecular disease mechanisms associated with schizophrenia remain largely unknown. Although primarily considered a disorder of the brain, there is evidence of a peripheral component to schizophrenia. In this study, we investigated liver tissue and red blood cells (RBC) from schizophrenia patients and controls using 2-D DIGE proteomic analysis.
View Article and Find Full Text PDF