A CoMoS composite is synthesized to combine the benefits of cobalt and molybdenum sulfides as an anodic material for advanced lithium-ion batteries (LIBs). The synthesis is accomplished using a simple two-step hydrothermal method and the resulting CoMoS nanocomposites are subsequently encapsulated in a carbonized polydopamine shell. The synthesis procedure exploited the self-polymerization ability of dopamine to create nitrogen-doped carbon-coated cobalt molybdenum sulfide, denoted as CoMoS@NC.
View Article and Find Full Text PDFAn essential key to enhancing the specific capacity and cyclic stability of transition metal oxide materials is the hybridization of carbon compounds by binder-free methods for supercapacitors. Carbonaceous compounds shorten the electron-ion diffusion pathways due to their high active surface area and conductivity. Herein, we focus on improving the specific energy, stability, and conductivity of the electrode by the incorporation of nanosized carbon material.
View Article and Find Full Text PDF