The estimation of chronological age from biological fluids has been an important quest for forensic scientists worldwide, with recent approaches exploiting the variability of DNA methylation patterns with age in order to develop the next generation of forensic 'DNA intelligence' tools for this application. Drawing from the conclusions of previous work utilising massively parallel sequencing (MPS) for this analysis, this work introduces a DNA methylation-based age estimation method for blood that exhibits the best combination of prediction accuracy and sensitivity reported to date. Statistical evaluation of markers from 51 studies using microarray data from over 4000 individuals, followed by validation using in-house generated MPS data, revealed a final set of 11 markers with the greatest potential for accurate age estimation from minimal DNA material.
View Article and Find Full Text PDFBone homeostasis requires continuous remodeling of bone matrix to maintain structural integrity. This involves extensive communication between bone-forming osteoblasts and bone-resorbing osteoclasts to orchestrate balanced progenitor cell recruitment and activation. Only a few mediators controlling progenitor activation are known to date and have been targeted for intervention of bone disorders such as osteoporosis.
View Article and Find Full Text PDFThe caudal fin of teleost fish regenerates fully within two weeks of amputation. While various cell lineages have been identified and characterized in the regenerating fin, the origin of bone cells remains debated. Here, we analysed collagen10a1 (col10a1) expressing cells in the regenerating fin of the medaka (Oryzias latipes) and tested whether they represent an alternative progenitor source for regenerating osteoblasts.
View Article and Find Full Text PDF