Publications by authors named "Sudha Rana"

Millets are small-seeded crops which have been well adopted globally owing to their high concentration of macro and micronutrients such as protein, dietary fibre, essential fatty acids, minerals and vitamins. Considering their climate resilience and potential role in nutritional and health security, the year 2023 has been declared as 'International Year of Millets' by the United Nations. Cereals being the major nutrient vehicle for a majority population, and proteins being the second most abundant nutrient in millets, these grains can be a suitable alternative for plant-based proteins.

View Article and Find Full Text PDF

The aim of this study was to investigate the effect of atmospheric cold plasma (ACP) treatment on the microbial inactivation, physicochemical properties, and shelf-life of strawberry fruit with its extended in-package storage at room (25 °C) and refrigerated (4 °C) temperature. ACP treatment of 10, 15 and 30 min was studied on strawberry fruit using a dielectric barrier discharge (DBD) at 60 kV with an input voltage of 260 V at 50 Hz. The shelf-life of ACP treated strawberry was extended to 5 days at 25 °C and 9 days at 4 °C in sealed ACP package.

View Article and Find Full Text PDF

Objective: Skin contamination is one of the most likely risks after accidental or occupational radiological accidents. Using scintigraphy, we assessed a topical lotion for its decontamination efficacy (DE) after exposure with short-lived medical radioisotopes technetium Tc 99m (Tc) and thallium 201Tl (Tl).

Methods: Using Tc (300 ± 5 μCi/100 μl) and Tl (100 ± 5 μCi/100 μl), the thoracoabdominal region (shaved skin) of Sprague Dawley rats and human tissue equivalent were contaminated and then decontaminated using cotton swabs soaked in formulated lotion at different time intervals.

View Article and Find Full Text PDF

This study aimed to develop p-tertbutylcalix[4]arene o/w nanoemulsion for decontamination of radioisotopes from skin. Formulation was characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), multi-photon confocal microscopy techniques and in vitro dissolution studies. In vivo evaluation of nano-emulsion was done using nuclear medicine technique.

View Article and Find Full Text PDF

Background: Increased use of the radioactive materials in the field of research, medical, nuclear power plant, and industry has increased the risk of accidental exposure. Intentional use of the radioisotopes by terrorist organizations could cause exposure/contamination of a number of the population. In view of the accidental contamination, there is a need to develop self-usable decontamination formulations that could be used immediately after contamination is suspected.

View Article and Find Full Text PDF

Introduction: Radioactive contamination can occur as a result of accidental or intentional release of radioactive materials (RM) into the environment. RM may deposit on clothing, skin, or hair. Decontamination of contaminated persons should be done as soon as possible to minimize the deleterious health effects of radiation.

View Article and Find Full Text PDF

Radiation incident involving living organisms is an uncommon but a very serious situation. The first step in medical management including triage is high-throughput assessment of the radiation dose received. Radiation exposure levels can be assessed from viability of cells, cellular organelles such as chromosome and different intermediate metabolites.

View Article and Find Full Text PDF

Exposure to radiation leads to a number of health-related malfunctions. Ionizing radiation is more harmful than non-ionizing radiation, as it causes both direct and indirect effects. Irradiation with ionizing radiation results in free radical-induced oxidative stress.

View Article and Find Full Text PDF