Publications by authors named "Sudha Rajderkar"

Article Synopsis
  • * Researchers combined various methods, including histone modification and single-cell analysis, to map out the regulatory elements involved in craniofacial development in both humans and mice.
  • * They identified 14,000 human craniofacial enhancers, with over half showing similar chromatin patterns in mice, creating a valuable resource for future genetics and developmental research.
View Article and Find Full Text PDF

Mouse models are a critical tool for studying human diseases, particularly developmental disorders. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models.

View Article and Find Full Text PDF
Article Synopsis
  • The study addresses the unclear genetic factors behind craniofacial birth defects and facial shape variations, focusing on the role of distant-acting transcriptional enhancers in gene regulation during key developmental stages.
  • Researchers created a detailed catalogue of around 14,000 enhancers involved in human facial development by combining profiling of histone modifications and chromatin accessibility, along with single-cell analysis, across various embryonic stages.
  • The findings reveal that 56% of human craniofacial enhancers are conserved in mice, offering valuable insights for understanding the genetic underpinnings of craniofacial conditions and enhancing future studies in genetics and development.
View Article and Find Full Text PDF

Topologically associating domain (TAD) boundaries partition the genome into distinct regulatory territories. Anecdotal evidence suggests that their disruption may interfere with normal gene expression and cause disease phenotypes, but the overall extent to which this occurs remains unknown. Here we demonstrate that targeted deletions of TAD boundaries cause a range of disruptions to normal in vivo genome function and organismal development.

View Article and Find Full Text PDF

Calcific aortic valve disease (CAVD) is a common cardiac defect, particularly in the aging population. While several risk factors, such as bi-leaflet valve structure and old age, have been identified in CAVD pathogenesis, molecular mechanisms resulting in this condition are still under active investigation. Bone morphogenetic protein signaling via the activin type I receptor (AcvRI) plays an important role during physiological and pathological processes involving calcification, e.

View Article and Find Full Text PDF

Congenital cardiac malformations are among the most common birth defects in humans. Here we show that Trim33, a member of the Tif1 subfamily of tripartite domain containing transcriptional cofactors, is required for appropriate differentiation of the pre-cardiogenic mesoderm during a narrow time window in late gastrulation. While mesoderm-specific Trim33 mutants did not display noticeable phenotypes, epiblast-specific Trim33 mutant embryos developed ventricular septal defects, showed sparse trabeculation and abnormally thin compact myocardium, and died as a result of cardiac failure during late gestation.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) are an established model for investigating developmental processes, disease conditions, tissue regeneration and therapeutic targets. Previous studies have shown that tripartite motif-containing 33 protein (Trim33) functions as a chromatin reader during Nodal-induced mesoderm induction. Here we report that despite reduced proliferation, mouse ESCs deficient in remained pluripotent when cultured under non-differentiating conditions.

View Article and Find Full Text PDF

Ellis-van Creveld (EvC) syndrome is a skeletal dysplasia, characterized by short limbs, postaxial polydactyly, and dental abnormalities. EvC syndrome is also categorized as a ciliopathy because of ciliary localization of proteins encoded by the two causative genes, EVC and EVC2 (aka LIMBIN). While recent studies demonstrated important roles for EVC/EVC2 in Hedgehog signaling, there is still little known about the pathophysiological mechanisms underlying the skeletal dysplasia features of EvC patients, and in particular why limb development is affected, but not other aspects of organogenesis that also require Hedgehog signaling.

View Article and Find Full Text PDF

Ellis-van Creveld (EvC) syndrome (OMIM 225500) is an autosomal recessive disease characterized with chondrodysplastic dwarfism in association with abnormalities in oral cavity. Ciliary proteins EVC and EVC2 have been identified as causative genes and they play an important role on Hedgehog signal transduction. We have also identified a causative gene LIMBIN for bovine chondrodysplastic dwarfism (bcd) that is later identified as the bovine ortholog of EVC2.

View Article and Find Full Text PDF

BMP signaling plays an essential role in second heart field-derived heart and arterial trunk development, including myocardial differentiation, right ventricular growth, and interventricular, outflow tract and aortico-pulmonary septation. It is mediated by a number of different BMP ligands, and receptors, many of which are present simultaneously. The mechanisms by which they regulate morphogenetic events and degree of redundancy amongst them have still to be elucidated.

View Article and Find Full Text PDF

Dentin sialophosphoprotein (DSPP) mutations cause dentin dysplasia type II (DD-II) and dentinogenesis imperfecta types II and III (DGI-II and DGI-III, respectively). We identified two kindreds with DGI-II who exhibited vertical bands of hypoplastic enamel. Both families had a previously reported DSPP mutation that segregated with the disease phenotype.

View Article and Find Full Text PDF