The cytochrome P4501A (CYP1A) enzymes play important roles in the metabolic activation and detoxification of numerous environmental carcinogens, including polycyclic aromatic hydrocarbons (PAHs). In this study, we tested the hypothesis that hepatic CYP1A2 differentially regulates mouse hepatic and pulmonary CYP1A1 expression and suppresses transcriptional activation of human CYP1A1 (hCYP1A1) promoter in response to 3-methylcholanthrene (MC) in vivo. Administration of wild-type (WT) (C57BL/6J) or Cyp1a2-null mice with a single dose of MC (100 μmol/kg i.
View Article and Find Full Text PDFWe reported earlier that exposure of rats to 3-methylcholanthrene (MC) causes sustained induction of hepatic cytochrome P450 (CYP)1A expression for up to 45 days by mechanisms other than persistence of the parent MC (Moorthy, J. 2000. Pharmacology.
View Article and Find Full Text PDFCytochrome CYP1A (CYP1A) enzymes catalyze bioactivation of 3-methylcholanthrene (MC) to genotoxic metabolites. Here, we tested the hypothesis that CYP1A2 catalyzes formation of MC-DNA adducts that are preferentially formed in the promoter region of CYP1A1, resulting in modulation of CYP1A1 gene expression. MC bound covalently to plasmid DNA (50 micro g) containing human CYP1A1 promoter (pGL3-1A1), when incubated with wild-type (WT) liver microsomes (2 mg) and NAPPH 37 degrees C for 2h, giving rise to 9 adducts, as determined by (32)P-postlabeling.
View Article and Find Full Text PDFThere is significant human exposure to polycyclic aromatic hydrocarbons (PAHs), many of which are bioactivated by the cytochrome P450 (P450) 1A family of enzymes to metabolites that are capable of covalently binding to DNA, a critical step in the initiation of carcinogenesis. We reported earlier that exposure of rats to 3-methylcholanthrene (MC) causes sustained induction of hepatic cytochrome P4501A expression for up to 45 days. Here, we tested the hypothesis that MC elicits persistent induction of other genes that are regulated by the Ah receptor (AHR).
View Article and Find Full Text PDFAdministration of supplemental oxygen is frequently encountered in infants suffering from pulmonary insufficiency and in adults with acute respiratory distress syndrome. However, hyperoxia causes acute lung damage in experimental animals. In the present study, we investigated the roles of the Ah receptor (AHR) in the modulation of cytochrome P4501A (CYP1A) enzymes and in the development of lung injury by hyperoxia.
View Article and Find Full Text PDFJ Pharmacol Exp Ther
April 2003
Benzo[a]pyrene (BP), a polycylic aromatic hydrocarbon (PAH), is a potent atherogen and carcinogen in laboratory animals. Since genotoxic mechanisms may contribute to the development of atherosclerosis by PAHs, we have tested the hypotheses that: 1) BP induces DNA adducts in mouse aortic smooth muscle cells (SMCs); 2) 3-hydroxybenzo[a]pyrene (3-OH-BP) and benzo[a]pyrene-3,6-quinone (BPQ) are proximate genotoxic metabolites; and 3) cytochrome P4501B1 (CYP1B1) mediates the activation of BP and its metabolites to ultimate genotoxic intermediates. Cultured mouse aortic SMCs were treated with BP, 3-OH-BP, or BPQ for 24 h, and DNA adduct formation was analyzed by (32)P-postlabeling.
View Article and Find Full Text PDFThere is significant human exposure to polycyclic aromatic hydrocarbons (PAHs), many of which are potent carcinogens in laboratory animals and are suspected human carcinogens. The PAHs are bioactivated by cytochrome P450 (CYP)1A1/1B1 enzymes to reactive intermediates that bind to DNA, a critical step in the initiation of carcinogenesis. The Ah receptor (AHR) plays a critical role in the induction of CYP1 enzymes (i.
View Article and Find Full Text PDFThe cytochrome P4501A enzymes play important roles in carcinogen metabolism. We reported previously that 3-methylcholanthrene (MC) elicits a persistent induction of hepatic, pulmonary, and mammary microsomal cytochrome P450 (P450) 1A enzymes for several weeks after MC withdrawal. In this study, we tested the hypothesis that CYP1A2, a liver-specific P450 isozyme, plays an important role in the mechanisms governing persistent CYP1A1 induction by MC in liver but not in extra-hepatic tissues such as lung, which is devoid of endogenous CYP1A2.
View Article and Find Full Text PDF