Publications by authors named "Sudha Kadiyala"

Data on the role of platelet concentrate (PC) in spinal fusion are limited. Using the New Zealand white rabbit model, we compared fusion rates at L5-L6 using 2 different volumes (1.5 cm(3), 3.

View Article and Find Full Text PDF

Study Design: Four groups of 6 animals underwent single-level noninstrumented posterolateral lumbar fusion (PLF) with one of the following grafts: 1) autograft, 2) cell-enriched beta-tricalcium phosphate (TCP), 3) TCP with whole bone marrow, and 4) TCP alone. Plain radiographs were taken after surgery and at death, 6 months after surgery. Explanted spine segments were analyzed by manual palpation, micro-CT, and histology.

View Article and Find Full Text PDF

Using a canine critical-size segmental defect model, a two-phased study was undertaken to evaluate the healing efficacy of demineralized bone and cancellous chips (DBM-CC) enriched with osteoprogenitor cells using a Selective Cell Retention (SCR) technology. The goals of this study were: 1) to determine the bone-healing efficacy of SCR-enriched grafts versus autograft, and 2) to assess the value of clotting SCR-enriched grafts with platelet-rich plasma (PRP). Thirty dogs were included in Phase I: 18 dogs were treated with an SCR-enriched DBM-CC graft clotted with autologous bone marrow, and were compared to 12 autograft controls.

View Article and Find Full Text PDF

Background: Mesenchymal stem cells from adult bone marrow are multipotent cells capable of forming bone, cartilage, and other connective tissues. In a previous study, we demonstrated that autologous mesenchymal stem cells could repair a critical-sized bone defect in the dog. The objective of this study was to determine whether the use of allogeneic mesenchymal stem cells could heal a critical-sized bone defect in the femoral diaphysis in dogs without the use of immunosuppressive therapy.

View Article and Find Full Text PDF

This study was designed to evaluate mesenchymal stem cell (MSC)-based alveolar bone regeneration in a canine alveolar saddle defect model. MSCs were loaded onto hydroxyapatite/tricalcium phosphate (HA/TCP) matrices. Scanning electron microscopic (SEM) evaluation demonstrated greater than 75% MSC coverage of the HA/TCP porous surface prior to placement regardless of MSC donor.

View Article and Find Full Text PDF