Objective: To determine the subunit expression and functional activation of phagocyte-like NADPH oxidase (Nox), reactive oxygen species (ROS) generation and caspase-3 activation in the Zucker diabetic fatty (ZDF) rat and diabetic human islets.
Research Design And Methods: Expression of core components of Nox was quantitated by Western blotting and densitometry. ROS levels were quantitated by the 2',7'-dichlorofluorescein diacetate method.
Chem Res Toxicol
October 2011
Isothiocyanates (ITCs), such as phenethyl isothiocyanate (PEITC) and sulforaphane (SFN), are effective cancer chemopreventive compounds. It is believed that the major mechanism for the cancer preventive activity of ITCs is through the induction of cell cycle arrest and apoptosis. However, the upstream molecular targets of ITCs have been underexplored until recently.
View Article and Find Full Text PDFScope: Naturally-occurring chemopreventive agent phenethyl isothiocyanate (PEITC), derived primarily from watercress, has been shown to inhibit cell growth and induce apoptosis in cancer cells. In this study, we examined the potential of PEITC in enhancing cisplatin-induced apoptosis in cervical cancer cells and its mechanisms.
Methods And Results: HeLa cells were exposed to PEITC, cisplatin or both.
Isothiocyanates (ITCs) derived from cruciferous vegetables induce apoptosis in cancer cells. We demonstrate that certain naturally occurring ITCs selectively deplete mutant p53 but not the wild-type and do so via a transcription-independent mechanism. Direct p53 binding followed by conformational changes appears to be a mechanism by which mutant p53 is depleted.
View Article and Find Full Text PDFIsothiocyanates (ITCs) found in cruciferous vegetables, including benzyl-ITC (BITC), phenethyl-ITC (PEITC), and sulforaphane (SFN), inhibit carcinogenesis in animal models and induce apoptosis and cell cycle arrest in various cell types. The biochemical mechanisms of cell growth inhibition by ITCs are not fully understood. Our recent study showed that ITC binding to intracellular proteins may be an important initiating event for the induction of apoptosis.
View Article and Find Full Text PDFInduction of apoptosis underlies a mechanism for inhibiting tumorigenesis by phenethyl isothiocyanate (PEITC) and sulforaphane (SFN). However, the upstream events by which isothiocyanates (ITC) induce apoptosis have not been fully investigated. As electrophiles, ITCs could trigger apoptosis by binding to DNA or proteins or by inducing oxidative stress.
View Article and Find Full Text PDFTranscriptional activation by Gcn4p is dependent on the coactivators SWI/SNF, SAGA, and Srb Mediator, which are recruited by Gcn4p and stimulate assembly of the pre-initiation complex (PIC) at the ARG1 promoter in vivo. We show that recruitment of all three coactivators is nearly simultaneous with binding of Gcn4p at ARG1 and is followed quickly by PIC formation and elongation by RNA polymerase II (Pol II) through the open reading frame. Despite the simultaneous recruitment of coactivators, rapid recruitment of SWI/SNF depends on the histone acetyltransferase (HAT) subunit of SAGA (Gcn5p), a non-HAT function of SAGA, and on Mediator.
View Article and Find Full Text PDF