Publications by authors named "Suderow H"

Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice.

View Article and Find Full Text PDF

We provide the superconducting density of states of the pnictide superconductor LaRuP(= 4.1 K), measured using millikelvin scanning tunneling microscopy. From the tunneling conductance, we extract a density of states which shows the opening of a s-wave single superconducting gap.

View Article and Find Full Text PDF

The coercivity of single-domain magnetic nanoparticles typically decreases with the nanoparticle size and reaches zero when thermal fluctuations overcome the magnetic anisotropy. Here, we used SQUID-on-tip microscopy to investigate the coercivity of square-shaped CrGeTe nanoislands with a wide range of sizes and width-to-thickness aspect ratios. The results reveal an anomalous size-dependent coercivity, with smaller islands exhibiting higher coercivity.

View Article and Find Full Text PDF

We present the design, fabrication and discuss the performance of a new combined high-resolution Scanning Tunneling and Thermopower Microscope (STM/SThEM). We also describe the development of the electronic control, the user interface, the vacuum system, and arrangements to reduce acoustical noise and vibrations. We demonstrate the microscope's performance with atomic-resolution topographic images of highly oriented pyrolytic graphite (HOPG) and local thermopower measurements in the semimetal BiTe.

View Article and Find Full Text PDF

The synthesis of two-dimensional van der Waals magnets has paved the way for both technological applications and fundamental research on magnetism confined to ultra-small length scales. Edge magnetic moments in ferromagnets are expected to be less magnetized than in the sample interior because of the reduced amount of neighboring ferromagnetic spins at the sample edge. We recently demonstrated that CrGeTe (CGT) flakes thinner than 10 nm are hard ferromagnets; i.

View Article and Find Full Text PDF

Two-dimensional electronic states at surfaces are often observed in simple wide-band metals such as Cu or Ag (refs. ). Confinement by closed geometries at the nanometre scale, such as surface terraces, leads to quantized energy levels formed from the surface band, in stark contrast to the continuous energy dependence of bulk electron bands.

View Article and Find Full Text PDF

CrGeTe (CGT) is a semiconducting vdW ferromagnet shown to possess magnetism down to a two-layer thick sample. Although CGT is one of the leading candidates for spintronics devices, a comprehensive analysis of CGT thickness dependent magnetization is currently lacking. In this work, we employ scanning SQUID-on-tip (SOT) microscopy to resolve the magnetic properties of exfoliated CGT flakes at 4.

View Article and Find Full Text PDF

A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few Å. Often, the tunneling current between the tip and the sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer.

View Article and Find Full Text PDF

We describe a scanning tunneling microscope (STM) that operates at magnetic fields up to 22 T and temperatures down to 80 mK. We discuss the design of the STM head, with an improved coarse approach, the vibration isolation system, and efforts to improve the energy resolution using compact filters for multiple lines. We measure the superconducting gap and Josephson effect in aluminum and show that we can resolve features in the density of states as small as 8 μeV.

View Article and Find Full Text PDF

Bound states in superconductors are expected to exhibit a spatially resolved electron-hole asymmetry which is the hallmark of their quantum nature. This asymmetry manifests as oscillations at the Fermi wavelength, which is usually tiny and thus washed out by thermal broadening or by scattering at defects. Here we demonstrate theoretically and confirm experimentally that, when coupled to magnetic impurities, bound states in a vortex core exhibit an emergent axial electron-hole asymmetry on a much longer scale, set by the coherence length.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the magnetoresistance (MR) behavior of the superconductor LaRuP, highlighting its unusual properties compared to other iron pnictide superconductors.
  • Unlike other similar materials, LaRuP does not show an enhancement of electron-electron correlations, and its MR does not follow the expected saturating behavior.
  • The research discusses how the unique band structure and a large open Fermi surface of LaRuP contribute to its significant MR, indicating that this behavior is due to different conduction mechanisms rather than strong electron-electron correlations.
View Article and Find Full Text PDF

Currently, the patterning of innovative three-dimensional (3D) nano-objects is required for the development of future advanced electronic components. Helium ion microscopy in combination with a precursor gas can be used for direct writing of three-dimensional nanostructures with a precise control of their geometry, and a significantly higher aspect ratio than other additive manufacturing technologies. We report here on the deposition of 3D hollow tungsten carbide nanowires with tailored diameters by tuning two key growth parameters, namely current and dose of the ion beam.

View Article and Find Full Text PDF

Novel schemes based on the design of complex three-dimensional (3D) nanoscale architectures are required for the development of the next generation of advanced electronic components. He focused-ion-beam (FIB) microscopy in combination with a precursor gas allows one to fabricate 3D nanostructures with an extreme resolution and a considerably higher aspect ratio than FIB-based methods, such as Ga FIB-induced deposition, or other additive manufacturing technologies. In this work, we report the fabrication of 3D tungsten carbide nanohelices with on-demand geometries via controlling key deposition parameters.

View Article and Find Full Text PDF

Under high-enough values of perpendicularly-applied magnetic field and current, a type-II superconductor presents a finite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices.

View Article and Find Full Text PDF

We show that the magnetic ordering of coupled atomic dimers on a superconductor is revealed by their intragap spectral features. Chromium atoms on the superconductor β-Bi_{2}Pd surface display Yu-Shiba-Rusinov bound states, detected as pairs of intragap excitations in tunneling spectra. By means of atomic manipulation with a scanning tunneling microscope's tip, we form Cr dimers with different arrangements and find that their intragap features appear either shifted or split with respect to single atoms.

View Article and Find Full Text PDF

We report efficient vortex pinning in thickness-modulated tungsten-carbon-based (W-C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W-C superconducting films have been created with thickness modulation properties exhibiting periodicity from 60 to 140 nm, leading to a strong pinning potential for the vortex lattice. This produces local minima in the resistivity up to high magnetic fields (2.

View Article and Find Full Text PDF

We describe a three axis vector magnet system for cryogenic scanning probe microscopy measurements. We discuss the magnet support system and the power supply, consisting of a compact three way 100 A current source. We obtain tilted magnetic fields in all directions with maximum value of 5T along z-axis and of 1.

View Article and Find Full Text PDF

A superconductor in a magnetic field acquires a finite electrical resistance caused by vortex motion. A quest to immobilize vortices and recover zero resistance at high fields made intense studies of vortex pinning one of the mainstreams of superconducting research. Yet, the decades of efforts resulted in a realization that even promising nanostructures, utilizing vortex matching, cannot withstand high vortex density at large magnetic fields.

View Article and Find Full Text PDF

Superconductors with an odd number of bands crossing the Fermi energy have topologically protected Andreev states at interfaces, including Majorana states in one-dimensional geometries. We propose here that repeated indentation of a Pb tip on a Pb substrate can lead to nanowires such that the resulting superconducting system has novel topological properties. We have analyzed a number of conductance curves obtained in different nanowires, and observe, in a few cases, very peculiar dependence of the critical current on magnetic field.

View Article and Find Full Text PDF

CeRu(2)Si(2) and CeRh(2)Si(2) are two similar heavy fermion stoichiometric compounds located on the two sides of a magnetic quantum critical phase transition. CeRh(2)Si(2) is an antiferromagnet below T(N) = 36 K with moderate electronic masses whereas CeRu(2)Si(2) is a paramagnetic metal with particularly heavy electrons. Here we present tunneling spectroscopy measurements as a function of temperature (from 0.

View Article and Find Full Text PDF

We describe a method to make scanning tunneling microscopy/spectroscopy imaging at very low temperatures while driving a constant electric current up to some tens of mA through the sample. It gives a new local probe, which we term current driven scanning tunneling microscopy/spectroscopy. We show spectroscopic and topographic measurements under the application of a current in superconducting Al and NbSe(2) at 100 mK.

View Article and Find Full Text PDF

We describe a scanning tunneling microscope for operation in a dilution refrigerator with a sample stage which can be moved macroscopically in a range up to a cm and with an accuracy down to the tens of nm. The position of the tip over the sample as set at room temperature does not change more than a few micrometers when cooling down. This feature is particularly interesting for work on micrometer sized samples.

View Article and Find Full Text PDF

We study the behavior of bundles of superconducting vortices when increasing the magnetic field using scanning tunneling microscopy and spectroscopy at 100 mK. Pinning centers are given by features on the surface corrugation. We find strong net vortex motion in a bundle towards a well-defined direction.

View Article and Find Full Text PDF

We present local tunneling spectroscopy experiments in the superconducting and ferromagnetic phases of the reentrant superconductor ErRh4B4. The tunneling conductance curves jump from showing normal to superconducting features within a few mK close to the ferromagnetic transition temperature, with a clear hysteretic behavior. Within the ferromagnetic phase, we do not detect any superconducting correlations.

View Article and Find Full Text PDF