Objectives: Bulk-filled composite resins are popularly used for posterior restorations due to various advantages. Routine oral hygiene measures like toothbrushing and the use of various mouthrinses can influence the mechanical properties of composite resins. Desensitizing mouthrinses are widely used as well, to manage dentinal hypersensitivity.
View Article and Find Full Text PDFDespite decades of research, metallic corrosion remains a long-standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur-selenium (S-Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion-resistant coating with protection efficiency of ≈99.
View Article and Find Full Text PDFMaterials can suffer mechanical fatigue when subjected to cyclic loading at stress levels much lower than the ultimate tensile strength, and understanding this behaviour is critical to evaluating long-term dynamic reliability. The fatigue life and damage mechanisms of two-dimensional (2D) materials, of interest for mechanical and electronic applications, are currently unknown. Here, we present a fatigue study of freestanding 2D materials, specifically graphene and graphene oxide (GO).
View Article and Find Full Text PDFThe transformation from semiconducting to metallic phase, accompanied by a structural transition in 2D transition metal dichalcogenides has attracted the attention of the researchers worldwide. The unconventional structural transformation of fluorinated WS (FWS ) into the 1T phase is described. The energy difference between the two phases debugs this transition, as fluorination enhances the stability of 1T FWS and makes it energetically favorable at higher F concentration.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2018
Bi- or tri- functional catalysts based on atomic layers are receiving tremendous scientific attention due to their importance in various energy technologies. Recent studies on molybdenum disulphide (MoS2) nanosheets revealed that controlling the edge states and doping/modifying with suitable elements are highly important in tuning the catalytic activities of MoS2. Here we report a bulk, single step method to synthesize metal modified MoS2 quantum dots (QDs).
View Article and Find Full Text PDFOptical coherence tomography (OCT) has continually evolved and expanded as one of the most valuable routine tests in ophthalmology. However, noise (speckle) in the acquired images causes quality degradation of OCT images and makes it difficult to analyze the acquired images. In this paper, an iterative approach based on bilateral filtering is proposed for speckle reduction in multiframe OCT data.
View Article and Find Full Text PDFA thermoplastic polyurethane (TPU) composite film containing hexadecyl-functionalized low-defect graphene nanoribbons (HD-GNRs) was produced by solution casting. The HD-GNRs were well distributed within the polyurethane matrix, leading to phase separation of the TPU. Nitrogen gas effective diffusivity of TPU was decreased by 3 orders of magnitude with only 0.
View Article and Find Full Text PDFThe creation of three-dimensionally engineered nanoporous architectures via covalently interconnected nanoscale building blocks remains one of the fundamental challenges in nanotechnology. Here we report the synthesis of ordered, stacked macroscopic three-dimensional (3D) solid scaffolds of graphene oxide (GO) fabricated via chemical cross-linking of two-dimensional GO building blocks. The resulting 3D GO network solids form highly porous interconnected structures, and the controlled reduction of these structures leads to formation of 3D conductive graphene scaffolds.
View Article and Find Full Text PDFWe describe an approach to prepare co-continuous microstructured blends of polymers and nanoparticles by formation of a percolating network of particles within one phase of a polymer mixture undergoing spinodal decomposition. Nanorods or nanospheres of CdSe were added to near-critical blends of polystyrene and poly(vinyl methyl ether) quenched to above their lower critical solution temperature. Beyond a critical loading of nanoparticles, phase separation is arrested due to the aggregation of particles into a network (or colloidal gel) within the poly(vinyl methyl ether) phase, yielding a co-continuous spinodal-like structure with a characteristic length scale of several micrometers.
View Article and Find Full Text PDFWe demonstrate polarization-induced spectral shifts and associated linearly polarized absorption and emission in single CdSe/oligo-(phenylene vinylene) (CdSe/OPV) nanoparticles. A mechanism for these observations is presented in which charge separation from photoexcited ligands results in a significant Stark distortion of the quantum dot electron/hole wavefunctions. This distortion results in an induced linear polarization and an associated red shift in band-edge photoluminescence.
View Article and Find Full Text PDFSilicon quantum dots (QDs) were prepared with a corona of di-n-octyl phosphine oxides, by performing hydrosilylation chemistry on the surface of hydrogen-terminated Si QDs. These novel Si QDs proved well-suited to serve as "ligands" for other semiconductor QDs, such as CdSe, by interaction of the phosphine oxide corona with the CdSe surface. A pronounced photoluminescence quenching of CdSe quantum dots was observed upon introduction of the phosphine oxide functionalized Si QDs to a CdSe QD solution.
View Article and Find Full Text PDFFrom size considerations alone, polymers and nanoparticles should be natural partners for the preparation of composite materials. However, this prospect is more difficult than first glance would suggest, and clever synthetic, physical, and engineering considerations are required to optimize the merged value of polymers and nanoparticles. In this issue, Jeffrey Pyun and co-workers provide compelling evidence of the value of such composite materials, by stringing together magnetic nanoparticles into "pearl necklace" assemblies.
View Article and Find Full Text PDFWe report on linearly polarized absorption and emission from individual (4.3 nm) CdSe quantum dots whose surfaces are coordinated with monodisperse oligo-phenylene vinylene ligands. Shown previously to suppress quantum dot blinking, we demonstrate here that the electronic interaction of photoexcited ligands with the quantum dot core is manifested as a strong polarization anisotropy in absorption (M = 0.
View Article and Find Full Text PDFSilicon nanoparticles were prepared and functionalized with alkene-terminated poly(ethylene oxide) to impart amphiphilic solution properties to the particles.
View Article and Find Full Text PDFGold nanorods synthesized using cetyltrimethylammonium bromide and tetraoctylammonium bromide as stabilizers are functionalized with a thiol derivative of ruthenium(II) trisbipyridyl complex [(Ru(bpy)3(2+)-C5-SH] in dodecanethiol using a place-exchange reaction. The changes in the plasmon absorption bands and transmission electron micrographs indicate significant changes in the gold rod morphology during the place-exchange reaction. The (Ru(bpy)(3)2+-C5-SH in its excited state undergoes quick deactivation when bound to gold nanorods.
View Article and Find Full Text PDFThe goal of this study was to assess the ability of squaraine-rotaxanes to generate singlet oxygen for potential application in photodynamic therapy (PDT). Specifically, we compare the aggregation and photophysical properties of an iodinated squaraine dye and an iodinated squaraine-rotaxane. Even under strongly aggregating conditions, the absorption spectra of both remain relatively sharp.
View Article and Find Full Text PDFDesign of nanohybrid systems possessing several ruthenium trisbipyridine (Ru(bpy)(3)(2+)) chromophores on the surface of gold nanoparticles, by adopting a place exchange reaction, was reported and their photophysical properties were tuned by varying the density of chromophores. The charge shift between the excited and ground-state Ru(bpy)(3)(2+) chromophores was reported for the first time, leading to the formation of Ru(bpy)(3)(+) and Ru(bpy)(3)(3+). Electron-transfer products were not observed on decreasing the concentration of Ru(bpy)(3)(2+) functionalized on Au nanoparticles or in a saturated solution of unbound chromophores.
View Article and Find Full Text PDFThe absorption of 4,5-benzoindotricarbocyanine dye (IR125) in the infrared can be tuned by controlling the type of aggregation in different media. Molecular clusters of this dye formed in a mixed solvent show broad absorption in the 550-950 nm region as compared to the absorption bands of J- and H-type aggregates. The molecular clusters of the carbocyanine dye are electrophoretically deposited as thin film on optically transparent electrodes using a dc electric field.
View Article and Find Full Text PDFThe rigid rodlike character of phenyleneethynylenes and their ability to communicate charge/excitation energy over long distances have made them useful as molecular linkers in the light energy harvesting assemblies and molecular electronics devices. These linker molecules themselves possess rich photochemistry as evident from the relatively large yields of the excited singlet (0.5-0.
View Article and Find Full Text PDFThe unique photophysical, conformational, and electronic properties of two model phenyleneethynylene-based rigid rod molecular systems, possessing dialkoxy substitutions, are reported in comparison with an unsubstituted system. Twisting of the phenyl rings along the carbon-carbon triple bond is almost frictionless in these systems giving rise to planar as well as several twisted ground-state conformations, and this results in broad structureless absorption in the spectral region of 250-450 nm. In the case of 1,4-bis(phenylethynyl)benzene, a broad absorption band was observed due to the HOMO-LUMO transition, whereas dialkoxy-substituted compounds possess two well-separated bands.
View Article and Find Full Text PDFA unique strategy for the selective detection of micromolar concentrations of cysteine/glutathione in the presence of various other alpha-amino acids through the plasmon coupling of Au nanorods is reported.
View Article and Find Full Text PDF